論文の概要: Semantic 3D-aware Portrait Synthesis and Manipulation Based on
Compositional Neural Radiance Field
- arxiv url: http://arxiv.org/abs/2302.01579v2
- Date: Mon, 10 Apr 2023 12:37:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-11 20:55:32.825424
- Title: Semantic 3D-aware Portrait Synthesis and Manipulation Based on
Compositional Neural Radiance Field
- Title(参考訳): 合成ニューラルラディアンス場に基づくセマンティック3次元画像合成と操作
- Authors: Tianxiang Ma, Bingchuan Li, Qian He, Jing Dong, Tieniu Tan
- Abstract要約: セマンティックな3次元画像合成と操作のための合成ニューラルネットワーク場(CNeRF)を提案する。
CNeRFは、イメージを意味領域に分割し、各領域の独立した神経放射場を学び、最終的にそれらを融合し、完全な画像をレンダリングする。
最先端の3D-Aware GAN法と比較して,我々は高品質な3D一貫性合成を維持しつつ,きめ細かな意味領域操作を可能にする。
- 参考スコア(独自算出の注目度): 55.431697263581626
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently 3D-aware GAN methods with neural radiance field have developed
rapidly. However, current methods model the whole image as an overall neural
radiance field, which limits the partial semantic editability of synthetic
results. Since NeRF renders an image pixel by pixel, it is possible to split
NeRF in the spatial dimension. We propose a Compositional Neural Radiance Field
(CNeRF) for semantic 3D-aware portrait synthesis and manipulation. CNeRF
divides the image by semantic regions and learns an independent neural radiance
field for each region, and finally fuses them and renders the complete image.
Thus we can manipulate the synthesized semantic regions independently, while
fixing the other parts unchanged. Furthermore, CNeRF is also designed to
decouple shape and texture within each semantic region. Compared to
state-of-the-art 3D-aware GAN methods, our approach enables fine-grained
semantic region manipulation, while maintaining high-quality 3D-consistent
synthesis. The ablation studies show the effectiveness of the structure and
loss function used by our method. In addition real image inversion and cartoon
portrait 3D editing experiments demonstrate the application potential of our
method.
- Abstract(参考訳): 近年,神経放射場を有する3次元GAN法が急速に発展している。
しかし、現在の手法では、画像全体を総合的な神経放射場としてモデル化し、合成結果の部分的な意味的編集性を制限する。
NeRFは画像画素をピクセル単位でレンダリングするので、空間次元でNeRFを分割することができる。
セマンティック3次元画像合成と操作のための合成ニューラルネットワーク場(CNeRF)を提案する。
CNeRFは、イメージを意味領域に分割し、各領域の独立した神経放射場を学び、最終的にそれらを融合し、完全な画像をレンダリングする。
これにより、合成された意味領域を独立に操作し、他の部分を固定することができる。
さらに、CNeRFは各意味領域内の形状とテクスチャを分離するように設計されている。
最先端の3d認識gan法と比較して,高品質な3d一貫性合成を維持しつつ,細粒度のセマンティック領域操作を可能にする。
アブレーション研究は,本手法が使用する構造と損失関数の有効性を示した。
さらに,実画像インバージョンとマンガのポートレート3d編集実験により,本手法の適用可能性を示す。
関連論文リスト
- SemanticHuman-HD: High-Resolution Semantic Disentangled 3D Human Generation [12.063815354055052]
本稿ではセマンティックHuman-HDについて紹介する。
SemanticHuman-HDは10242ドルの解像度で3D認識画像合成を実現する最初の方法でもある。
提案手法は, 3次元衣服生成, セマンティック・アウェア画像合成, 制御可能な画像合成など, 様々な用途にエキサイティングな可能性を開く。
論文 参考訳(メタデータ) (2024-03-15T10:18:56Z) - Improving Neural Radiance Fields with Depth-aware Optimization for Novel
View Synthesis [12.3338393483795]
SfMNeRFは,新規な視点の合成と3次元シーン形状の再構成を行う手法である。
SfMNeRFは、エピポーラ性、光度整合性、深さの滑らかさ、および3Dシーン構造を明示的に再構成するためにマッチ位置制約を用いる。
2つの公開データセットの実験では、SfMNeRFが最先端のアプローチを上回ることが示されている。
論文 参考訳(メタデータ) (2023-04-11T13:37:17Z) - NeRFMeshing: Distilling Neural Radiance Fields into
Geometrically-Accurate 3D Meshes [56.31855837632735]
我々は、NeRF駆動のアプローチで容易に3次元表面を再構成できるコンパクトで柔軟なアーキテクチャを提案する。
最後の3Dメッシュは物理的に正確で、デバイスアレイ上でリアルタイムでレンダリングできます。
論文 参考訳(メタデータ) (2023-03-16T16:06:03Z) - NerfDiff: Single-image View Synthesis with NeRF-guided Distillation from
3D-aware Diffusion [107.67277084886929]
単一の画像からの新しいビュー合成には、オブジェクトやシーンの隠蔽領域を推論すると同時に、入力とのセマンティックおよび物理的整合性を同時に維持する必要がある。
そこで我々は,NerfDiffを提案する。NerfDiffは3D対応条件拡散モデル(CDM)の知識を,テスト時に仮想ビューの集合を合成・精製することで,NeRFに抽出することでこの問題に対処する。
さらに,CDMサンプルから3次元一貫した仮想ビューを同時に生成し,改良された仮想ビューに基づいてNeRFを微調整する新しいNeRF誘導蒸留アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-20T17:12:00Z) - SegNeRF: 3D Part Segmentation with Neural Radiance Fields [63.12841224024818]
SegNeRFは、通常の放射場とセマンティックフィールドを統合するニューラルネットワーク表現である。
SegNeRFは、未確認のオブジェクトであっても、ポーズされた画像から幾何学、外観、意味情報を同時に予測することができる。
SegNeRFは、野生で撮影されたオブジェクトの1つのイメージから、対応する部分のセグメンテーションによって、明示的な3Dモデルを生成することができる。
論文 参考訳(メタデータ) (2022-11-21T07:16:03Z) - Decomposing NeRF for Editing via Feature Field Distillation [14.628761232614762]
NeRFで表現されるシーンの編集は、基礎となるコネクショナリスト表現がオブジェクト指向や構成的ではないため、難しい。
本研究では,NeRFのセマンティックなシーン分解の問題に対処し,クエリに基づく局所的な編集を可能にする。
本稿では,市販の自己監督型2次元画像特徴抽出器の知識を,放射場と平行に最適化された3次元特徴場に抽出することを提案する。
論文 参考訳(メタデータ) (2022-05-31T07:56:09Z) - DRaCoN -- Differentiable Rasterization Conditioned Neural Radiance
Fields for Articulated Avatars [92.37436369781692]
フルボディの体積アバターを学習するためのフレームワークであるDRaCoNを提案する。
2Dと3Dのニューラルレンダリング技術の利点を利用する。
挑戦的なZJU-MoCapとHuman3.6Mデータセットの実験は、DRaCoNが最先端の手法より優れていることを示している。
論文 参考訳(メタデータ) (2022-03-29T17:59:15Z) - Enhancement of Novel View Synthesis Using Omnidirectional Image
Completion [61.78187618370681]
ニューラルレイディアンス場(NeRF)に基づく1枚の360度RGB-D画像から新しいビューを合成する方法を提案する。
実験により,提案手法は実世界と実世界の両方でシーンの特徴を保ちながら,可塑性な新規なビューを合成できることが実証された。
論文 参考訳(メタデータ) (2022-03-18T13:49:25Z) - 3D-aware Image Synthesis via Learning Structural and Textural
Representations [39.681030539374994]
生成モデルを作成することは、2D画像空間と3D物理世界を橋渡しするが、まだ難しい。
近年、GAN(Generative Adversarial Network)とNeRF(Neural Radiance Field)という3次元座標をピクセル値にマッピングする手法が試みられている。
本稿では,構造表現とテクスチャ表現を明示的に学習することで,高忠実度3次元画像合成のための新しいフレームワーク,VolumeGANを提案する。
論文 参考訳(メタデータ) (2021-12-20T18:59:40Z) - FENeRF: Face Editing in Neural Radiance Fields [34.332520597067074]
FENeRFは、ビュー一貫性と局所編集可能なポートレート画像を生成することができる3D対応ジェネレータである。
本手法では,2つの非結合型潜時符号を用いて,空間配向3次元ボリュームにおける顔のセマンティクスとテクスチャを共通形状で生成する。
実験の結果、FENeRFは様々な顔編集タスクにおいて最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2021-11-30T15:23:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。