Symbiosis of an artificial neural network and models of biological
neurons: training and testing
- URL: http://arxiv.org/abs/2302.01636v1
- Date: Fri, 3 Feb 2023 10:06:54 GMT
- Title: Symbiosis of an artificial neural network and models of biological
neurons: training and testing
- Authors: Tatyana Bogatenko, Konstantin Sergeev, Andrei Slepnev, J\"urgen
Kurths, Nadezhda Semenova
- Abstract summary: We show the possibility of creating and identifying the features of an artificial neural network (ANN) which consists of mathematical models of biological neurons.
The FitzHugh--Nagumo (FHN) system is used as an example of model demonstrating simplified neuron activity.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we show the possibility of creating and identifying the
features of an artificial neural network (ANN) which consists of mathematical
models of biological neurons. The FitzHugh--Nagumo (FHN) system is used as an
example of model demonstrating simplified neuron activity. First, in order to
reveal how biological neurons can be embedded within an ANN, we train the ANN
with nonlinear neurons to solve a a basic image recognition problem with MNIST
database; and next, we describe how FHN systems can be introduced into this
trained ANN. After all, we show that an ANN with FHN systems inside can be
successfully trained and its accuracy becomes larger. What has been done above
opens up great opportunities in terms of the direction of analog neural
networks, in which artificial neurons can be replaced by biological ones.
\end{abstract}
Related papers
- Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - A survey on learning models of spiking neural membrane systems and spiking neural networks [0.0]
Spiking neural networks (SNN) are a biologically inspired model of neural networks with certain brain-like properties.
In SNN, communication between neurons takes place through the spikes and spike trains.
SNPS can be considered a branch of SNN based more on the principles of formal automata.
arXiv Detail & Related papers (2024-03-27T14:26:41Z) - Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
We develop a new method with neuronal operations based on lateral connections and Hebbian learning.
We show that Hebbian and anti-Hebbian learning on recurrent lateral connections can effectively extract the principal subspace of neural activities.
Our method consistently solves for spiking neural networks with nearly zero forgetting.
arXiv Detail & Related papers (2024-02-19T09:29:37Z) - Learning to Act through Evolution of Neural Diversity in Random Neural
Networks [9.387749254963595]
In most artificial neural networks (ANNs), neural computation is abstracted to an activation function that is usually shared between all neurons.
We propose the optimization of neuro-centric parameters to attain a set of diverse neurons that can perform complex computations.
arXiv Detail & Related papers (2023-05-25T11:33:04Z) - Efficient, probabilistic analysis of combinatorial neural codes [0.0]
neural networks encode inputs in the form of combinations of individual neurons' activities.
These neural codes present a computational challenge due to their high dimensionality and often large volumes of data.
We apply methods previously applied to small examples and apply them to large neural codes generated by experiments.
arXiv Detail & Related papers (2022-10-19T11:58:26Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z) - Explainability Tools Enabling Deep Learning in Future In-Situ Real-Time
Planetary Explorations [58.720142291102135]
Deep learning (DL) has proven to be an effective machine learning and computer vision technique.
Most of the Deep Neural Network (DNN) architectures are so complex that they are considered a 'black box'
In this paper, we used integrated gradients to describe the attributions of each neuron to the output classes.
It provides a set of explainability tools (ET) that opens the black box of a DNN so that the individual contribution of neurons to category classification can be ranked and visualized.
arXiv Detail & Related papers (2022-01-15T07:10:00Z) - Neural Networks, Artificial Intelligence and the Computational Brain [0.0]
This study explores the concept of ANNs as a simulator of the biological neuron.
It also explores why brain-like intelligence is needed and how it differs from computational framework.
arXiv Detail & Related papers (2020-12-25T05:56:41Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
We propose a novel neural generative model inspired by the theory of predictive processing in the brain.
In a similar way, artificial neurons in our generative model predict what neighboring neurons will do, and adjust their parameters based on how well the predictions matched reality.
arXiv Detail & Related papers (2020-12-07T01:20:38Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
We show that a standard neuron followed by our novel apical dendrite activation (ADA) can learn the XOR logical function with 100% accuracy.
We conduct experiments on six benchmark data sets from computer vision, signal processing and natural language processing.
arXiv Detail & Related papers (2020-02-02T21:09:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.