論文の概要: Revisiting Personalized Federated Learning: Robustness Against Backdoor
Attacks
- arxiv url: http://arxiv.org/abs/2302.01677v1
- Date: Fri, 3 Feb 2023 11:58:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-06 16:26:14.175223
- Title: Revisiting Personalized Federated Learning: Robustness Against Backdoor
Attacks
- Title(参考訳): 個人化フェデレーション学習の再考: バックドア攻撃に対するロバスト性
- Authors: Zeyu Qin, Liuyi Yao, Daoyuan Chen, Yaliang Li, Bolin Ding, Minhao
Cheng
- Abstract要約: pFLフレームワークにおけるバックドア攻撃の最初の研究を行う。
モデル共有部分を持つpFL法は,バックドア攻撃に対するロバスト性を大幅に向上させることができることを示す。
本稿では,バックドア攻撃に対する防御性能を実証的に向上する軽量防御手法Simple-Tuningを提案する。
- 参考スコア(独自算出の注目度): 53.81129518924231
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, besides improving prediction accuracy, we study whether
personalization could bring robustness benefits to backdoor attacks. We conduct
the first study of backdoor attacks in the pFL framework, testing 4 widely used
backdoor attacks against 6 pFL methods on benchmark datasets FEMNIST and
CIFAR-10, a total of 600 experiments. The study shows that pFL methods with
partial model-sharing can significantly boost robustness against backdoor
attacks. In contrast, pFL methods with full model-sharing do not show
robustness. To analyze the reasons for varying robustness performances, we
provide comprehensive ablation studies on different pFL methods. Based on our
findings, we further propose a lightweight defense method, Simple-Tuning, which
empirically improves defense performance against backdoor attacks. We believe
that our work could provide both guidance for pFL application in terms of its
robustness and offer valuable insights to design more robust FL methods in the
future.
- Abstract(参考訳): 本研究では,予測精度の向上に加えて,パーソナライゼーションがバックドア攻撃にロバスト性をもたらすかどうかを検討する。
ベンチマークデータセットfemnistとcifar-10における6つのpflメソッドに対する4つの広く使用されているバックドア攻撃をテストし,合計600の実験を行った。
この研究は、部分的なモデル共有を伴うpFL法がバックドア攻撃に対するロバスト性を著しく向上させることを示した。
対照的に、完全なモデル共有を持つpfl法は堅牢性を示しない。
異なるロバスト性性能の理由を分析するため,pfl法における包括的アブレーション研究を行った。
そこで本研究では,バックドア攻撃に対する防御性能を実証的に向上する軽量防御手法Simple-Tuningを提案する。
私たちは、pFLアプリケーションの堅牢性の観点からガイダンスを提供し、将来より堅牢なFLメソッドを設計するための貴重な洞察を提供することができると考えています。
関連論文リスト
- Revisiting Backdoor Attacks against Large Vision-Language Models [76.42014292255944]
本稿では,LVLMの命令チューニングにおけるバックドア攻撃の一般化可能性について実験的に検討する。
以上に基づいて,既存のバックドア攻撃を修正した。
本稿では,従来のシンプルなバックドア戦略でさえ,LVLMに深刻な脅威をもたらすことを指摘する。
論文 参考訳(メタデータ) (2024-06-27T02:31:03Z) - Lurking in the shadows: Unveiling Stealthy Backdoor Attacks against Personalized Federated Learning [31.386836775526685]
PFLシステムに適用可能なステルスで効果的なバックドア攻撃戦略である textitPFedBA を提案する。
我々の研究は、PFLシステムに対する微妙ながら強力なバックドアの脅威に光を当て、新たなバックドアの課題に対する防衛を強化するようコミュニティに促している。
論文 参考訳(メタデータ) (2024-06-10T12:14:05Z) - You Can Backdoor Personalized Federated Learning [18.91908598410108]
既存の研究は主に、一般的な連合学習シナリオにおけるバックドア攻撃と防御に焦点を当てている。
本稿では,2つの単純かつ効果的な戦略からなる2段階の攻撃手法であるBapFLを提案する。
論文 参考訳(メタデータ) (2023-07-29T12:25:04Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z) - Unraveling the Connections between Privacy and Certified Robustness in
Federated Learning Against Poisoning Attacks [68.20436971825941]
フェデレートラーニング(FL)は、分散ユーザのデータを活用するグローバルモデルを共同でトレーニングするための、効率的なパラダイムを提供する。
いくつかの研究により、FLは毒殺攻撃に弱いことが示されている。
ローカルユーザのプライバシを保護するため、FLは通常、差分プライベートな方法でトレーニングされる。
論文 参考訳(メタデータ) (2022-09-08T21:01:42Z) - CRFL: Certifiably Robust Federated Learning against Backdoor Attacks [59.61565692464579]
本稿では,第1の汎用フレームワークであるCertifiably Robust Federated Learning (CRFL) を用いて,バックドアに対する堅牢なFLモデルをトレーニングする。
提案手法は, モデルパラメータのクリッピングと平滑化を利用して大域的モデル平滑化を制御する。
論文 参考訳(メタデータ) (2021-06-15T16:50:54Z) - Meta Federated Learning [57.52103907134841]
フェデレートラーニング(FL)は、時間的敵攻撃の訓練に弱い。
本稿では,メタフェデレーション学習(Meta Federated Learning, Meta-FL)を提案する。
論文 参考訳(メタデータ) (2021-02-10T16:48:32Z) - BaFFLe: Backdoor detection via Feedback-based Federated Learning [3.6895394817068357]
フィードバックに基づくフェデレーション学習(BAFFLE)によるバックドア検出を提案する。
BAFFLEは,最先端のバックドア攻撃を100%,偽陽性率5%以下で確実に検出できることを示す。
論文 参考訳(メタデータ) (2020-11-04T07:44:51Z) - Defending against Backdoors in Federated Learning with Robust Learning
Rate [25.74681620689152]
フェデレートラーニング(FL)は、エージェントの集合が、潜在的に敏感なデータを共有せずに、協調的にモデルをトレーニングすることを可能にする。
バックドア攻撃において、敵はトレーニング中にモデルにバックドア機能を埋め込もうとする。
FLプロトコルの変更を最小限に抑える軽量ディフェンスを提案する。
論文 参考訳(メタデータ) (2020-07-07T23:38:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。