Improving the Timing Resolution of Positron Emission Tomography
Detectors Using Boosted Learning -- A Residual Physics Approach
- URL: http://arxiv.org/abs/2302.01681v2
- Date: Thu, 26 Oct 2023 07:25:50 GMT
- Title: Improving the Timing Resolution of Positron Emission Tomography
Detectors Using Boosted Learning -- A Residual Physics Approach
- Authors: Stephan Naunheim, Yannick Kuhl, David Schug, Volkmar Schulz, Florian
Mueller
- Abstract summary: This work presents a novel and versatile approach to detector optimization using machine learning (ML) and residual physics.
We apply the concept to positron emission tomography (PET), intending to improve the coincidence time resolution (CTR)
We were able to improve the CTR significantly (more than 20%) for clinically relevant detectors of 19 mm height, reaching CTRs of 185 ps (450-550 keV)
- Score: 0.4999814847776097
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence (AI) is entering medical imaging, mainly enhancing
image reconstruction. Nevertheless, improvements throughout the entire
processing, from signal detection to computation, potentially offer significant
benefits. This work presents a novel and versatile approach to detector
optimization using machine learning (ML) and residual physics. We apply the
concept to positron emission tomography (PET), intending to improve the
coincidence time resolution (CTR). PET visualizes metabolic processes in the
body by detecting photons with scintillation detectors. Improved CTR
performance offers the advantage of reducing radioactive dose exposure for
patients. Modern PET detectors with sophisticated concepts and read-out
topologies represent complex physical and electronic systems requiring
dedicated calibration techniques. Traditional methods primarily depend on
analytical formulations successfully describing the main detector
characteristics. However, when accounting for higher-order effects, additional
complexities arise matching theoretical models to experimental reality. Our
work addresses this challenge by combining traditional calibration with AI and
residual physics, presenting a highly promising approach. We present a residual
physics-based strategy using gradient tree boosting and physics-guided data
generation. The explainable AI framework SHapley Additive exPlanations (SHAP)
was used to identify known physical effects with learned patterns. In addition,
the models were tested against basic physical laws. We were able to improve the
CTR significantly (more than 20%) for clinically relevant detectors of 19 mm
height, reaching CTRs of 185 ps (450-550 keV).
Related papers
- An Evaluation of Lightweight Deep Learning Techniques in Medical Imaging
for High Precision COVID-19 Diagnostics [0.0]
Decision support systems relax the challenges inherent to the physical examination of images.
Most deep learning algorithms utilised approaches are not amenable to implementation on resource-constrained devices.
This paper presents the development and evaluation of the performance of lightweight deep learning technique for the detection of COVID-19 using the MobileNetV2 model.
arXiv Detail & Related papers (2023-05-30T13:14:03Z) - Self-Supervised Learning for Physiologically-Based Pharmacokinetic
Modeling in Dynamic PET [36.28565007063204]
Voxel-wise physiologically-based modeling of the time activity curves (TAC) can provide relevant diagnostic information for clinical workflow.
This work introduces a self-supervisedPET loss formulation to enforce the similarity between the measured TAC and those generated with the learned kinetic parameters.
To the best of our knowledge, this is the first self-supervised network that allows elvox-wise computation of kinetic parameters consistent with a non-linear kinetic model.
arXiv Detail & Related papers (2023-05-17T21:08:02Z) - Label-free timing analysis of SiPM-based modularized detectors with
physics-constrained deep learning [9.234802409391111]
We propose a novel method based on deep learning for timing analysis of modularized detectors.
We mathematically demonstrate the existence of the optimal function desired by the method, and give a systematic algorithm for training and calibration of the model.
arXiv Detail & Related papers (2023-04-24T09:16:31Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
Medical ultrasound imaging relies heavily on high-quality signal processing to provide reliable and interpretable image reconstructions.
Deep learning based methods, which are optimized in a data-driven fashion, have gained popularity.
A relatively new paradigm combines the power of the two: leveraging data-driven deep learning, as well as exploiting domain knowledge.
arXiv Detail & Related papers (2022-04-09T13:04:36Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
We develop a multi-channel convolutional analysis operator learning (MCAOL) method to exploit common spatial features within attenuation images at different energies.
We propose an optimization method which jointly reconstructs the attenuation images at low and high energies with a mixed norm regularization on the sparse features.
arXiv Detail & Related papers (2022-03-10T14:22:54Z) - The Preliminary Results on Analysis of TAIGA-IACT Images Using
Convolutional Neural Networks [68.8204255655161]
The aim of the work is to study the possibility of the machine learning application to solve the tasks set for TAIGA-IACT.
The method of Convolutional Neural Networks (CNN) was applied to process and analyze Monte-Carlo events simulated with CORSIKA.
arXiv Detail & Related papers (2021-12-19T15:17:20Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
coarse parametrisation in propagation distance, position errors and partial coherence frequently menaces the experiment viability.
A modern Deep Learning framework is used to correct autonomously the setup incoherences, thus improving the quality of a ptychography reconstruction.
We tested our system on both synthetic datasets and also on real data acquired at the TwinMic beamline of the Elettra synchrotron facility.
arXiv Detail & Related papers (2021-05-18T10:15:17Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z) - Using Machine Learning to Speed Up and Improve Calorimeter R&D [0.7106986689736827]
Two typical problems which slow down evaluation of physics performance for particular approaches to calorimeter detector technologies and configurations are:.
We discuss the use of advanced machine learning techniques to speed up and improve the precision of the detector development and optimisation cycle.
arXiv Detail & Related papers (2020-03-27T14:44:46Z) - Learned Spectral Computed Tomography [0.0]
We propose a Deep Learning imaging method for Spectral Photon-Counting Computed Tomography.
The method takes the form of a two-step learned primal-dual algorithm that is trained using case-specific data.
The proposed approach is characterised by fast reconstruction capability and high imaging performance, even in limited-data cases.
arXiv Detail & Related papers (2020-03-09T13:39:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.