FR3D: Three-dimensional Flow Reconstruction and Force Estimation for
Unsteady Flows Around Extruded Bluff Bodies via Conformal Mapping Aided
Convolutional Autoencoders
- URL: http://arxiv.org/abs/2302.01802v2
- Date: Wed, 12 Jul 2023 22:04:28 GMT
- Title: FR3D: Three-dimensional Flow Reconstruction and Force Estimation for
Unsteady Flows Around Extruded Bluff Bodies via Conformal Mapping Aided
Convolutional Autoencoders
- Authors: Ali Girayhan \"Ozbay and Sylvain Laizet
- Abstract summary: We propose a convolutional autoencoder based neural network model, dubbed FR3D, which enables flow reconstruction.
We show that the FR3D model reconstructs pressure and velocity components with a few percentage points of error.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In many practical fluid dynamics experiments, measuring variables such as
velocity and pressure is possible only at a limited number of sensor locations,
\textcolor{black}{for a few two-dimensional planes, or for a small 3D domain in
the flow}. However, knowledge of the full fields is necessary to understand the
dynamics of many flows. Deep learning reconstruction of full flow fields from
sparse measurements has recently garnered significant research interest, as a
way of overcoming this limitation. This task is referred to as the flow
reconstruction (FR) task. In the present study, we propose a convolutional
autoencoder based neural network model, dubbed FR3D, which enables FR to be
carried out for three-dimensional flows around extruded 3D objects with
different cross-sections. An innovative mapping approach, whereby multiple
fluid domains are mapped to an annulus, enables FR3D to generalize its
performance to objects not encountered during training. We conclusively
demonstrate this generalization capability using a dataset composed of 80
training and 20 testing geometries, all randomly generated. We show that the
FR3D model reconstructs pressure and velocity components with a few percentage
points of error. Additionally, using these predictions, we accurately estimate
the Q-criterion fields as well lift and drag forces on the geometries.
Related papers
- Aero-Nef: Neural Fields for Rapid Aircraft Aerodynamics Simulations [1.1932047172700866]
This paper presents a methodology to learn surrogate models of steady state fluid dynamics simulations on meshed domains.
The proposed models can be applied directly to unstructured domains for different flow conditions.
Remarkably, the method can perform inference five order of magnitude faster than the high fidelity solver on the RANS transonic airfoil dataset.
arXiv Detail & Related papers (2024-07-29T11:48:44Z) - ParaPoint: Learning Global Free-Boundary Surface Parameterization of 3D Point Clouds [52.03819676074455]
ParaPoint is an unsupervised neural learning pipeline for achieving global free-boundary surface parameterization.
This work makes the first attempt to investigate neural point cloud parameterization that pursues both global mappings and free boundaries.
arXiv Detail & Related papers (2024-03-15T14:35:05Z) - OPA-3D: Occlusion-Aware Pixel-Wise Aggregation for Monocular 3D Object
Detection [51.153003057515754]
OPA-3D is a single-stage, end-to-end, Occlusion-Aware Pixel-Wise Aggregation network.
It jointly estimates dense scene depth with depth-bounding box residuals and object bounding boxes.
It outperforms state-of-the-art methods on the main Car category.
arXiv Detail & Related papers (2022-11-02T14:19:13Z) - Benchmarking of Deep Learning models on 2D Laminar Flow behind Cylinder [0.0]
Direct Numerical Simulation(DNS) is one of the tasks in Computational Fluid Dynamics.
We train these three models in an autoencoder manner, for this the dataset is treated like sequential frames given to the model as input.
We observe that recently introduced architecture called Transformer significantly outperforms its counterparts on the selected dataset.
arXiv Detail & Related papers (2022-05-26T16:49:09Z) - Deep learning fluid flow reconstruction around arbitrary two-dimensional
objects from sparse sensors using conformal mappings [0.0]
We propose a new framework called Spatial Multi-Geometry FR (SMGFR) task.
It is capable of reconstructing fluid flows around different two-dimensional objects without re-training.
The SMGFR task is extended to predictions of fluid flow snapshots in the future.
arXiv Detail & Related papers (2022-02-08T11:44:16Z) - Positional Encoding Augmented GAN for the Assessment of Wind Flow for
Pedestrian Comfort in Urban Areas [0.41998444721319217]
This work rephrases the problem from computing 3D flow fields using CFD to a 2D image-to-image translation-based problem on the building footprints to predict the flow field at pedestrian height level.
We investigate the use of generative adversarial networks (GAN), such as Pix2Pix and CycleGAN representing state-of-the-art for image-to-image translation task in various domains.
arXiv Detail & Related papers (2021-12-15T19:37:11Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
State-of-the-art methods for driving-scene LiDAR-based perception often project the point clouds to 2D space and then process them via 2D convolution.
A natural remedy is to utilize the 3D voxelization and 3D convolution network.
We propose a new framework for the outdoor LiDAR segmentation, where cylindrical partition and asymmetrical 3D convolution networks are designed to explore the 3D geometric pattern.
arXiv Detail & Related papers (2021-09-12T06:25:11Z) - Teaching the Incompressible Navier-Stokes Equations to Fast Neural
Surrogate Models in 3D [4.981834139548193]
In this work, we present significant extensions to a recently proposed deep learning framework, which addresses the aforementioned challenges in 2D.
We go from 2D to 3D and propose an efficient architecture to cope with the high demands of 3D grids in terms of memory and computational complexity.
Our method indicates strong improvements in terms of accuracy, speed and generalization capabilities over current 3D NN-based fluid models.
arXiv Detail & Related papers (2020-12-22T09:21:40Z) - Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks [87.50632573601283]
We present a novel method for multi-view depth estimation from a single video.
Our method achieves temporally coherent depth estimation results by using a novel Epipolar Spatio-Temporal (EST) transformer.
To reduce the computational cost, inspired by recent Mixture-of-Experts models, we design a compact hybrid network.
arXiv Detail & Related papers (2020-11-26T04:04:21Z) - A Point-Cloud Deep Learning Framework for Prediction of Fluid Flow
Fields on Irregular Geometries [62.28265459308354]
Network learns end-to-end mapping between spatial positions and CFD quantities.
Incompress laminar steady flow past a cylinder with various shapes for its cross section is considered.
Network predicts the flow fields hundreds of times faster than our conventional CFD.
arXiv Detail & Related papers (2020-10-15T12:15:02Z) - Implicit Functions in Feature Space for 3D Shape Reconstruction and
Completion [53.885984328273686]
Implicit Feature Networks (IF-Nets) deliver continuous outputs, can handle multiple topologies, and complete shapes for missing or sparse input data.
IF-Nets clearly outperform prior work in 3D object reconstruction in ShapeNet, and obtain significantly more accurate 3D human reconstructions.
arXiv Detail & Related papers (2020-03-03T11:14:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.