3D Neural Operator-Based Flow Surrogates around 3D geometries: Signed Distance Functions and Derivative Constraints
- URL: http://arxiv.org/abs/2503.17289v1
- Date: Fri, 21 Mar 2025 16:40:48 GMT
- Title: 3D Neural Operator-Based Flow Surrogates around 3D geometries: Signed Distance Functions and Derivative Constraints
- Authors: Ali Rabeh, Adarsh Krishnamurthy, Baskar Ganapathysubramanian,
- Abstract summary: computational cost of high-fidelity 3D flow simulations remains a significant challenge.<n>We evaluate Deep Operator Networks (DeepONet) and Geometric-DeepONet, a variant that incorporates geometry information via signed distance functions (SDFs)<n>Our results show that Geometric-DeepONet improves boundary-layer accuracy by up to 32% compared to standard DeepONet.
- Score: 3.100300350494905
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate modeling of fluid dynamics around complex geometries is critical for applications such as aerodynamic optimization and biomedical device design. While advancements in numerical methods and high-performance computing have improved simulation capabilities, the computational cost of high-fidelity 3D flow simulations remains a significant challenge. Scientific machine learning (SciML) offers an efficient alternative, enabling rapid and reliable flow predictions. In this study, we evaluate Deep Operator Networks (DeepONet) and Geometric-DeepONet, a variant that incorporates geometry information via signed distance functions (SDFs), on steady-state 3D flow over complex objects. Our dataset consists of 1,000 high-fidelity simulations spanning Reynolds numbers from 10 to 1,000, enabling comprehensive training and evaluation across a range of flow regimes. To assess model generalization, we test our models on a random and extrapolatory train-test splitting. Additionally, we explore a derivative-informed training strategy that augments standard loss functions with velocity gradient penalties and incompressibility constraints, improving physics consistency in 3D flow prediction. Our results show that Geometric-DeepONet improves boundary-layer accuracy by up to 32% compared to standard DeepONet. Moreover, incorporating derivative constraints enhances gradient accuracy by 25% in interpolation tasks and up to 45% in extrapolatory test scenarios, suggesting significant improvement in generalization capabilities to unseen 3D Reynolds numbers.
Related papers
- Factorized Implicit Global Convolution for Automotive Computational Fluid Dynamics Prediction [52.32698071488864]
We propose Factorized Implicit Global Convolution (FIGConv), a novel architecture that efficiently solves CFD problems for very large 3D meshes.<n>FIGConv achieves quadratic complexity $O(N2)$, a significant improvement over existing 3D neural CFD models.<n>We validate our approach on the industry-standard Ahmed body dataset and the large-scale DrivAerNet dataset.
arXiv Detail & Related papers (2025-02-06T18:57:57Z) - Transolver++: An Accurate Neural Solver for PDEs on Million-Scale Geometries [67.63077028746191]
Transolver++ is a highly parallel and efficient neural solver that can solve PDEs on million-scale geometries.<n>Transolver++ increases the single- GPU input capacity to million-scale points for the first time.<n>It achieves over 20% performance gain in million-scale high-fidelity industrial simulations.
arXiv Detail & Related papers (2025-02-04T15:33:50Z) - FlowBench: A Large Scale Benchmark for Flow Simulation over Complex
Geometries [19.15738125919099]
FlowBench is a dataset for neural simulators with over 10K samples.
FlowBench will enable evaluating the interplay between complex geometry, coupled flow phenomena, and data sufficiency on the performance of neural PDE solvers.
arXiv Detail & Related papers (2024-09-26T16:38:48Z) - Predicting 3D Rigid Body Dynamics with Deep Residual Network [0.0]
We present a framework combining a 3D physics simulator implemented in C++ with a deep learning model constructed using PyTorch.
The simulator generates training data encompassing linear and angular motion, elastic collisions, fluid friction, gravitational effects, and damping.
We evaluate the network's performance using a datasetof 10,000 simulated scenarios, each involving 3-5 interacting rigid bodies.
arXiv Detail & Related papers (2024-07-09T23:40:10Z) - DeepSimHO: Stable Pose Estimation for Hand-Object Interaction via
Physics Simulation [81.11585774044848]
We present DeepSimHO, a novel deep-learning pipeline that combines forward physics simulation and backward gradient approximation with a neural network.
Our method noticeably improves the stability of the estimation and achieves superior efficiency over test-time optimization.
arXiv Detail & Related papers (2023-10-11T05:34:36Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
We propose the geometry-informed neural operator (GINO) to learn the solution operator of large-scale partial differential equations.
We successfully trained GINO to predict the pressure on car surfaces using only five hundred data points.
arXiv Detail & Related papers (2023-09-01T16:59:21Z) - Hybrid quantum physics-informed neural networks for simulating computational fluid dynamics in complex shapes [37.69303106863453]
We present a hybrid quantum physics-informed neural network that simulates laminar fluid flows in 3D Y-shaped mixers.
Our approach combines the expressive power of a quantum model with the flexibility of a physics-informed neural network, resulting in a 21% higher accuracy compared to a purely classical neural network.
arXiv Detail & Related papers (2023-04-21T20:49:29Z) - Combined space-time reduced-order model with 3D deep convolution for
extrapolating fluid dynamics [4.984601297028257]
Deep learning-based reduced-order models have been recently shown to be effective in simulations.
In this study, we aim to improve the extrapolation capability by modifying network architecture and integrating space-time physics as an implicit bias.
To demonstrate the effectiveness of 3D convolution network, we consider a benchmark problem of the flow past a circular cylinder at laminar flow conditions.
arXiv Detail & Related papers (2022-11-01T07:14:07Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
We introduce Hybrid Graph Network Simulator (HGNS) for learning reservoir simulations of 3D subsurface fluid flows.
HGNS consists of a subsurface graph neural network (SGNN) to model the evolution of fluid flows, and a 3D-U-Net to model the evolution of pressure.
Using an industry-standard subsurface flow dataset (SPE-10) with 1.1 million cells, we demonstrate that HGNS is able to reduce the inference time up to 18 times compared to standard subsurface simulators.
arXiv Detail & Related papers (2022-06-15T17:29:57Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - A Physics-Constrained Deep Learning Model for Simulating Multiphase Flow
in 3D Heterogeneous Porous Media [1.4050836886292868]
A physics-constrained deep learning model is developed for solving multiphase flow in 3D heterogeneous porous media.
The model is trained from physics-based simulation data and emulates the physics process.
The model performs prediction with a speedup of 1400 times compared to physics-based simulations.
arXiv Detail & Related papers (2021-04-30T02:15:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.