FLRNet: A Deep Learning Method for Regressive Reconstruction of Flow Field From Limited Sensor Measurements
- URL: http://arxiv.org/abs/2411.13815v1
- Date: Thu, 21 Nov 2024 03:40:34 GMT
- Title: FLRNet: A Deep Learning Method for Regressive Reconstruction of Flow Field From Limited Sensor Measurements
- Authors: Phong C. H. Nguyen, Joseph B. Choi, Quang-Trung Luu,
- Abstract summary: We introduce FLRNet, a deep learning method for flow field reconstruction from sparse sensor measurements.
We validated the reconstruction capability and the generalizability of FLRNet under various fluid flow conditions and sensor configurations.
- Score: 0.2621730497733947
- License:
- Abstract: Many applications in computational and experimental fluid mechanics require effective methods for reconstructing the flow fields from limited sensor data. However, this task remains a significant challenge because the measurement operator, which provides the punctual sensor measurement for a given state of the flow field, is often ill-conditioned and non-invertible. This issue impedes the feasibility of identifying the forward map, theoretically the inverse of the measurement operator, for field reconstruction purposes. While data-driven methods are available, their generalizability across different flow conditions (\textit{e.g.,} different Reynold numbers) remains questioned. Moreover, they frequently face the problem of spectral bias, which leads to smooth and blurry reconstructed fields, thereby decreasing the accuracy of reconstruction. We introduce FLRNet, a deep learning method for flow field reconstruction from sparse sensor measurements. FLRNet employs an variational autoencoder with Fourier feature layers and incorporates an extra perceptual loss term during training to learn a rich, low-dimensional latent representation of the flow field. The learned latent representation is then correlated to the sensor measurement using a fully connected (dense) network. We validated the reconstruction capability and the generalizability of FLRNet under various fluid flow conditions and sensor configurations, including different sensor counts and sensor layouts. Numerical experiments show that in all tested scenarios, FLRNet consistently outperformed other baselines, delivering the most accurate reconstructed flow field and being the most robust to noise.
Related papers
- WiNet: Wavelet-based Incremental Learning for Efficient Medical Image Registration [68.25711405944239]
Deep image registration has demonstrated exceptional accuracy and fast inference.
Recent advances have adopted either multiple cascades or pyramid architectures to estimate dense deformation fields in a coarse-to-fine manner.
We introduce a model-driven WiNet that incrementally estimates scale-wise wavelet coefficients for the displacement/velocity field across various scales.
arXiv Detail & Related papers (2024-07-18T11:51:01Z) - Sensor Placement for Learning in Flow Networks [6.680930089714339]
This paper investigates the sensor placement problem for networks.
We first formalize the problem under a flow conservation assumption and show that it is NP-hard to place a fixed set of sensors optimally.
Next, we propose an efficient and adaptive greedy for sensor placement that scales to large networks.
arXiv Detail & Related papers (2023-12-12T01:08:08Z) - Leveraging arbitrary mobile sensor trajectories with shallow recurrent
decoder networks for full-state reconstruction [4.243926243206826]
We show that a sequence-to-vector model, such as an LSTM (long, short-term memory) network, with a decoder network, dynamic information can be mapped to full state-space estimates.
The exceptional performance of the network architecture is demonstrated on three applications.
arXiv Detail & Related papers (2023-07-20T21:42:01Z) - FR3D: Three-dimensional Flow Reconstruction and Force Estimation for
Unsteady Flows Around Extruded Bluff Bodies via Conformal Mapping Aided
Convolutional Autoencoders [0.0]
We propose a convolutional autoencoder based neural network model, dubbed FR3D, which enables flow reconstruction.
We show that the FR3D model reconstructs pressure and velocity components with a few percentage points of error.
arXiv Detail & Related papers (2023-02-03T15:13:57Z) - Deep learning fluid flow reconstruction around arbitrary two-dimensional
objects from sparse sensors using conformal mappings [0.0]
We propose a new framework called Spatial Multi-Geometry FR (SMGFR) task.
It is capable of reconstructing fluid flows around different two-dimensional objects without re-training.
The SMGFR task is extended to predictions of fluid flow snapshots in the future.
arXiv Detail & Related papers (2022-02-08T11:44:16Z) - GMFlow: Learning Optical Flow via Global Matching [124.57850500778277]
We propose a GMFlow framework for learning optical flow estimation.
It consists of three main components: a customized Transformer for feature enhancement, a correlation and softmax layer for global feature matching, and a self-attention layer for flow propagation.
Our new framework outperforms 32-iteration RAFT's performance on the challenging Sintel benchmark.
arXiv Detail & Related papers (2021-11-26T18:59:56Z) - Sensor-Guided Optical Flow [53.295332513139925]
This paper proposes a framework to guide an optical flow network with external cues to achieve superior accuracy on known or unseen domains.
We show how these can be obtained by combining depth measurements from active sensors with geometry and hand-crafted optical flow algorithms.
arXiv Detail & Related papers (2021-09-30T17:59:57Z) - Real-time detection of uncalibrated sensors using Neural Networks [62.997667081978825]
An online machine-learning based uncalibration detector for temperature, humidity and pressure sensors was developed.
The solution integrates an Artificial Neural Network as main component which learns from the behavior of the sensors under calibrated conditions.
The obtained results show that the proposed solution is able to detect uncalibrations for deviation values of 0.25 degrees, 1% RH and 1.5 Pa, respectively.
arXiv Detail & Related papers (2021-02-02T15:44:39Z) - Global field reconstruction from sparse sensors with Voronoi
tessellation-assisted deep learning [0.0]
We propose a data-driven spatial field recovery technique based on a structured grid-based deep-learning approach for arbitrary positioned sensors of any numbers.
The presented technique opens a new pathway towards the practical use of neural networks for real-time global field estimation.
arXiv Detail & Related papers (2021-01-03T03:43:53Z) - A Point-Cloud Deep Learning Framework for Prediction of Fluid Flow
Fields on Irregular Geometries [62.28265459308354]
Network learns end-to-end mapping between spatial positions and CFD quantities.
Incompress laminar steady flow past a cylinder with various shapes for its cross section is considered.
Network predicts the flow fields hundreds of times faster than our conventional CFD.
arXiv Detail & Related papers (2020-10-15T12:15:02Z) - LiteFlowNet3: Resolving Correspondence Ambiguity for More Accurate
Optical Flow Estimation [99.19322851246972]
We introduce LiteFlowNet3, a deep network consisting of two specialized modules to address the problem of optical flow estimation.
LiteFlowNet3 not only achieves promising results on public benchmarks but also has a small model size and a fast runtime.
arXiv Detail & Related papers (2020-07-18T03:30:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.