The Quantum Effect: A Recipe for QuantumPi
- URL: http://arxiv.org/abs/2302.01885v3
- Date: Mon, 8 May 2023 16:55:30 GMT
- Title: The Quantum Effect: A Recipe for QuantumPi
- Authors: Jacques Carette, Chris Heunen, Robin Kaarsgaard, Amr Sabry
- Abstract summary: Free categorical constructions characterise quantum computing as the combination of two copies of a reversible classical model.
This recipe effectively constructs a computationally universal quantum programming language from two copies of Pi.
- Score: 0.5735035463793007
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Free categorical constructions characterise quantum computing as the
combination of two copies of a reversible classical model, glued by the
complementarity equations of classical structures. This recipe effectively
constructs a computationally universal quantum programming language from two
copies of Pi, the internal language of rig groupoids. The construction consists
of Hughes' arrows. Thus answer positively the question whether a computational
effect exists that turns reversible classical computation into quantum
computation: the quantum effect. Measurements can be added by layering a
further effect on top. Our construction also enables some reasoning about
quantum programs (with or without measurement) through a combination of
classical reasoning and reasoning about complementarity.
Related papers
- Quantum decoherence from complex saddle points [0.0]
Quantum decoherence is the effect that bridges quantum physics to classical physics.
We present some first-principle calculations in the Caldeira-Leggett model.
We also discuss how to extend our work to general models by Monte Carlo calculations.
arXiv Detail & Related papers (2024-08-29T15:35:25Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Experimental verification of the quantum nature of a neural network [0.0]
I discuss what makes a system quantum and to what extent we can interpret a neural network as having quantum remnants.
I suggest a possible experiment that could extract entanglement from the quantum functioning rules (maps) of an otherwise classical neural network.
arXiv Detail & Related papers (2022-08-23T06:33:59Z) - Qunity: A Unified Language for Quantum and Classical Computing (Extended
Version) [3.5348690973777006]
We introduce Qunity, a new quantum programming language.
Qunity treats quantum computing as a natural generalization of classical computing.
We show how Qunity can cleanly express several quantum algorithms.
arXiv Detail & Related papers (2022-04-26T15:34:22Z) - Quantum Information Effects [0.0]
We study the two dual quantum information effects to manipulate the amount of information in quantum computation: hiding and allocation.
The resulting type-and-effect system is fully expressive for irreversible quantum computing, including measurement.
arXiv Detail & Related papers (2021-07-26T12:21:42Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Quantum Deformed Neural Networks [83.71196337378022]
We develop a new quantum neural network layer designed to run efficiently on a quantum computer.
It can be simulated on a classical computer when restricted in the way it entangles input states.
arXiv Detail & Related papers (2020-10-21T09:46:12Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
We consider the setting where the two parties (a classical Alice and a quantum Bob) can communicate only via a classical channel.
We show that it is in general impossible to realize a two-party quantum functionality with black-box simulation in the case of malicious quantum adversaries.
We provide a compiler that takes as input a classical proof of quantum knowledge (PoQK) protocol for a QMA relation R and outputs a zero-knowledge PoQK for R that can be verified by classical parties.
arXiv Detail & Related papers (2020-10-15T17:55:31Z) - On quantum ensembles of quantum classifiers [0.0]
Quantum machine learning seeks to exploit the underlying nature of a quantum computer to enhance machine learning techniques.
A specific implementation of the quantum ensemble of quantum classifiers, called the accuracy-weighted quantum ensemble, can be fully dequantised.
On the other hand, the general quantum ensemble framework is shown to contain the well-known Deutsch-Jozsa algorithm that notably provides a quantum speedup.
arXiv Detail & Related papers (2020-01-29T13:46:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.