Active Causal Learning for Decoding Chemical Complexities with Targeted Interventions
- URL: http://arxiv.org/abs/2404.04224v1
- Date: Fri, 5 Apr 2024 17:15:48 GMT
- Title: Active Causal Learning for Decoding Chemical Complexities with Targeted Interventions
- Authors: Zachary R. Fox, Ayana Ghosh,
- Abstract summary: We introduce an active learning approach that discerns underlying cause-effect relationships through strategic sampling.
This method identifies the smallest subset of the dataset capable of encoding the most information representative of a much larger chemical space.
The identified causal relations are then leveraged to conduct systematic interventions, optimizing the design task within a chemical space that the models have not encountered previously.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predicting and enhancing inherent properties based on molecular structures is paramount to design tasks in medicine, materials science, and environmental management. Most of the current machine learning and deep learning approaches have become standard for predictions, but they face challenges when applied across different datasets due to reliance on correlations between molecular representation and target properties. These approaches typically depend on large datasets to capture the diversity within the chemical space, facilitating a more accurate approximation, interpolation, or extrapolation of the chemical behavior of molecules. In our research, we introduce an active learning approach that discerns underlying cause-effect relationships through strategic sampling with the use of a graph loss function. This method identifies the smallest subset of the dataset capable of encoding the most information representative of a much larger chemical space. The identified causal relations are then leveraged to conduct systematic interventions, optimizing the design task within a chemical space that the models have not encountered previously. While our implementation focused on the QM9 quantum-chemical dataset for a specific design task-finding molecules with a large dipole moment-our active causal learning approach, driven by intelligent sampling and interventions, holds potential for broader applications in molecular, materials design and discovery.
Related papers
- MoleculeCLA: Rethinking Molecular Benchmark via Computational Ligand-Target Binding Analysis [18.940529282539842]
We construct a large-scale and precise molecular representation dataset of approximately 140,000 small molecules.
Our dataset offers significant physicochemical interpretability to guide model development and design.
We believe this dataset will serve as a more accurate and reliable benchmark for molecular representation learning.
arXiv Detail & Related papers (2024-06-13T02:50:23Z) - Data-Efficient Molecular Generation with Hierarchical Textual Inversion [48.816943690420224]
We introduce Hierarchical textual Inversion for Molecular generation (HI-Mol), a novel data-efficient molecular generation method.
HI-Mol is inspired by the importance of hierarchical information, e.g., both coarse- and fine-grained features, in understanding the molecule distribution.
Compared to the conventional textual inversion method in the image domain using a single-level token embedding, our multi-level token embeddings allow the model to effectively learn the underlying low-shot molecule distribution.
arXiv Detail & Related papers (2024-05-05T08:35:23Z) - From molecules to scaffolds to functional groups: building context-dependent molecular representation via multi-channel learning [10.025809630976065]
This paper introduces a novel pre-training framework that learns robust and generalizable chemical knowledge.
Our approach demonstrates competitive performance across various molecular property benchmarks.
arXiv Detail & Related papers (2023-11-05T23:47:52Z) - ChemVise: Maximizing Out-of-Distribution Chemical Detection with the
Novel Application of Zero-Shot Learning [60.02503434201552]
This research proposes learning approximations of complex exposures from training sets of simple ones.
We demonstrate this approach to synthetic sensor responses surprisingly improves the detection of out-of-distribution obscured chemical analytes.
arXiv Detail & Related papers (2023-02-09T20:19:57Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
We develop molecular embeddings that encode complex molecular characteristics to improve the performance of few-shot molecular property prediction.
Our approach leverages large amounts of synthetic data, namely the results of molecular docking calculations.
On multiple molecular property prediction benchmarks, training from the embedding space substantially improves Multi-Task, MAML, and Prototypical Network few-shot learning performance.
arXiv Detail & Related papers (2023-02-04T01:32:40Z) - Discovery of structure-property relations for molecules via
hypothesis-driven active learning over the chemical space [0.0]
We introduce a novel approach for the active learning over the chemical spaces based on hypothesis learning.
We construct the hypotheses on the possible relationships between structures and functionalities of interest based on a small subset of data.
This approach combines the elements from the symbolic regression methods such as SISSO and active learning into a single framework.
arXiv Detail & Related papers (2023-01-06T14:22:43Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
We propose a new retrieval-based framework for controllable molecule generation.
We use a small set of molecules to steer the pre-trained generative model towards synthesizing molecules that satisfy the given design criteria.
Our approach is agnostic to the choice of generative models and requires no task-specific fine-tuning.
arXiv Detail & Related papers (2022-08-23T17:01:16Z) - Graph-based Molecular Representation Learning [59.06193431883431]
Molecular representation learning (MRL) is a key step to build the connection between machine learning and chemical science.
Recently, MRL has achieved considerable progress, especially in methods based on deep molecular graph learning.
arXiv Detail & Related papers (2022-07-08T17:43:20Z) - Improving Molecular Representation Learning with Metric
Learning-enhanced Optimal Transport [49.237577649802034]
We develop a novel optimal transport-based algorithm termed MROT to enhance their generalization capability for molecular regression problems.
MROT significantly outperforms state-of-the-art models, showing promising potential in accelerating the discovery of new substances.
arXiv Detail & Related papers (2022-02-13T04:56:18Z) - Target-aware Molecular Graph Generation [37.937378787812264]
We propose SiamFlow, which forces the flow to fit the distribution of target sequence embeddings in latent space.
Specifically, we employ an alignment loss and a uniform loss to bring target sequence embeddings and drug graph embeddings into agreements.
Experiments quantitatively show that our proposed method learns meaningful representations in the latent space toward the target-aware molecular graph generation.
arXiv Detail & Related papers (2022-02-10T04:31:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.