Counterfactual Identifiability of Bijective Causal Models
- URL: http://arxiv.org/abs/2302.02228v2
- Date: Tue, 6 Jun 2023 21:50:52 GMT
- Title: Counterfactual Identifiability of Bijective Causal Models
- Authors: Arash Nasr-Esfahany, Mohammad Alizadeh, Devavrat Shah
- Abstract summary: We study counterfactual identifiability in causal models with bijective generation mechanisms (BGM)
We propose a practical learning method that casts learning a BGM as structured generative modeling.
Learned BGMs enable efficient counterfactual estimation and can be obtained using a variety of deep conditional generative models.
- Score: 22.820102235159368
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study counterfactual identifiability in causal models with bijective
generation mechanisms (BGM), a class that generalizes several widely-used
causal models in the literature. We establish their counterfactual
identifiability for three common causal structures with unobserved confounding,
and propose a practical learning method that casts learning a BGM as structured
generative modeling. Learned BGMs enable efficient counterfactual estimation
and can be obtained using a variety of deep conditional generative models. We
evaluate our techniques in a visual task and demonstrate its application in a
real-world video streaming simulation task.
Related papers
- Learning-based Models for Vulnerability Detection: An Extensive Study [3.1317409221921144]
We extensively and comprehensively investigate two types of state-of-the-art learning-based approaches.
We experimentally demonstrate the priority of sequence-based models and the limited abilities of both graph-based models.
arXiv Detail & Related papers (2024-08-14T13:01:30Z) - Deep Generative Models in Robotics: A Survey on Learning from Multimodal Demonstrations [52.11801730860999]
In recent years, the robot learning community has shown increasing interest in using deep generative models to capture the complexity of large datasets.
We present the different types of models that the community has explored, such as energy-based models, diffusion models, action value maps, or generative adversarial networks.
We also present the different types of applications in which deep generative models have been used, from grasp generation to trajectory generation or cost learning.
arXiv Detail & Related papers (2024-08-08T11:34:31Z) - Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
This paper proposes a novel framework to reinforce classification models using language-guided generated counterfactual images.
We identify model weaknesses by testing the model using the counterfactual image dataset.
We employ the counterfactual images as an augmented dataset to fine-tune and reinforce the classification model.
arXiv Detail & Related papers (2024-06-19T08:07:14Z) - Mining Frequent Structures in Conceptual Models [2.841785306638839]
We propose a general approach to the problem of discovering frequent structures in conceptual modeling languages.
We use the combination of a frequent subgraph mining algorithm and graph manipulation techniques.
The primary objective is to offer a support facility for language engineers.
arXiv Detail & Related papers (2024-06-11T10:24:02Z) - Learning Discrete Concepts in Latent Hierarchical Models [73.01229236386148]
Learning concepts from natural high-dimensional data holds potential in building human-aligned and interpretable machine learning models.
We formalize concepts as discrete latent causal variables that are related via a hierarchical causal model.
We substantiate our theoretical claims with synthetic data experiments.
arXiv Detail & Related papers (2024-06-01T18:01:03Z) - Unified View of Grokking, Double Descent and Emergent Abilities: A
Perspective from Circuits Competition [83.13280812128411]
Recent studies have uncovered intriguing phenomena in deep learning, such as grokking, double descent, and emergent abilities in large language models.
We present a comprehensive framework that provides a unified view of these three phenomena, focusing on the competition between memorization and generalization circuits.
arXiv Detail & Related papers (2024-02-23T08:14:36Z) - Bridging Generative and Discriminative Models for Unified Visual
Perception with Diffusion Priors [56.82596340418697]
We propose a simple yet effective framework comprising a pre-trained Stable Diffusion (SD) model containing rich generative priors, a unified head (U-head) capable of integrating hierarchical representations, and an adapted expert providing discriminative priors.
Comprehensive investigations unveil potential characteristics of Vermouth, such as varying granularity of perception concealed in latent variables at distinct time steps and various U-net stages.
The promising results demonstrate the potential of diffusion models as formidable learners, establishing their significance in furnishing informative and robust visual representations.
arXiv Detail & Related papers (2024-01-29T10:36:57Z) - From Identifiable Causal Representations to Controllable Counterfactual Generation: A Survey on Causal Generative Modeling [17.074858228123706]
We focus on fundamental theory, methodology, drawbacks, datasets, and metrics.
We cover applications of causal generative models in fairness, privacy, out-of-distribution generalization, precision medicine, and biological sciences.
arXiv Detail & Related papers (2023-10-17T05:45:32Z) - Diffusion Models Beat GANs on Image Classification [37.70821298392606]
Diffusion models have risen to prominence as a state-of-the-art method for image generation, denoising, inpainting, super-resolution, manipulation, etc.
We present our findings that these embeddings are useful beyond the noise prediction task, as they contain discriminative information and can also be leveraged for classification.
We find that with careful feature selection and pooling, diffusion models outperform comparable generative-discriminative methods for classification tasks.
arXiv Detail & Related papers (2023-07-17T17:59:40Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
Black-box nature of Deep Learning models has posed unanswered questions about what they learn from data.
Generative Adversarial Network (GAN) and multi-objectives are used to furnish a plausible attack to the audited model.
Its utility is showcased within a human face classification task, unveiling the enormous potential of the proposed framework.
arXiv Detail & Related papers (2020-03-25T11:08:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.