論文の概要: Multi-Task Self-Supervised Learning for Image Segmentation Task
- arxiv url: http://arxiv.org/abs/2302.02483v1
- Date: Sun, 5 Feb 2023 21:25:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-07 17:57:24.418331
- Title: Multi-Task Self-Supervised Learning for Image Segmentation Task
- Title(参考訳): 画像分割作業のためのマルチタスク自己教師付き学習
- Authors: Lichun Gao, Chinmaya Khamesra, Uday Kumbhar, Ashay Aglawe
- Abstract要約: 本稿では,深度予測と表面正規化を用いたマルチタスク学習によるセマンティックセグメンテーション性能向上のための自己指導手法を提案する。
2. マルチタスク学習に用いる異なる種類の重み付け技術(UW, Nash-MTL)の性能評価
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Thanks to breakthroughs in AI and Deep learning methodology, Computer vision
techniques are rapidly improving. Most computer vision applications require
sophisticated image segmentation to comprehend what is image and to make an
analysis of each section easier. Training deep learning networks for semantic
segmentation required a large amount of annotated data, which presents a major
challenge in practice as it is expensive and labor-intensive to produce such
data. The paper presents 1. Self-supervised techniques to boost semantic
segmentation performance using multi-task learning with Depth prediction and
Surface Normalization . 2. Performance evaluation of the different types of
weighing techniques (UW, Nash-MTL) used for Multi-task learning. NY2D dataset
was used for performance evaluation. According to our evaluation, the Nash-MTL
method outperforms single task learning(Semantic Segmentation).
- Abstract(参考訳): AIとディープラーニングの方法論の進歩のおかげで、コンピュータビジョン技術は急速に改善されている。
ほとんどのコンピュータビジョンアプリケーションは、画像の理解と各セクションの分析を容易にするために、高度な画像分割を必要とする。
セマンティックセグメンテーションのためのディープラーニングネットワークのトレーニングには大量の注釈付きデータが必要であり、そのようなデータを生成するのに費用がかかり、労力がかかるため、実際には大きな課題となっている。
論文が提示する
1. 深度予測と表面正規化を用いたマルチタスク学習によるセマンティックセグメンテーション性能向上手法
.
2. マルチタスク学習に用いる異なる種類の重み付け技術(UW, Nash-MTL)の性能評価
NY2Dデータセットは性能評価に使用された。
評価の結果,Nash-MTL法は単一タスク学習(Semantic Segmentation)よりも優れていた。
関連論文リスト
- M3: A Multi-Task Mixed-Objective Learning Framework for Open-Domain Multi-Hop Dense Sentence Retrieval [12.277521531556852]
M3は,高密度テキスト表現学習のためのマルチタスク混合オブジェクトに基づく,新しいマルチホップ高密度文検索システムである。
提案手法は,大規模オープンドメイン事実検証ベンチマークデータセットであるFEVER上での最先端性能を実現する。
論文 参考訳(メタデータ) (2024-03-21T01:52:07Z) - Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
マルチタスク学習(MTL)は、複数の関連するタスクを共同で学習し、共有表現空間から恩恵を受けるフレームワークである。
MTLは、ほとんど重複しない、あるいは重複しないアノテーションで分類タスクで成功することを示す。
本稿では,分散マッチングによるタスク間の知識交換を可能にする新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-02T14:18:11Z) - MOCA: Self-supervised Representation Learning by Predicting Masked Online Codebook Assignments [72.6405488990753]
自己教師付き学習は、ビジョントランスフォーマーネットワークの欲求を軽減できる。
所望のプロパティを統一する単段および単段のMOCAを提案する。
我々は,様々な評価プロトコルにおいて,低照度設定と強力な実験結果に対して,最先端の新たな結果を得る。
論文 参考訳(メタデータ) (2023-07-18T15:46:20Z) - Multi-task learning from fixed-wing UAV images for 2D/3D city modeling [0.0]
マルチタスク学習(Multi-task learning)は、トレーニングデータに制限のある複数のタスクを含むシーン理解のアプローチである。
インフラ開発、交通監視、スマート3D都市、変更検出などの都市管理アプリケーションでは、自動マルチタスクデータ分析が必要である。
本研究では,2D/3D都市モデリングのための固定翼UAV画像を用いたマルチタスク学習手法の性能評価のための共通フレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-25T14:45:42Z) - Large-scale Unsupervised Semantic Segmentation [163.3568726730319]
本稿では, 大規模無教師付きセマンティックセマンティックセグメンテーション (LUSS) の新たな課題を提案する。
ImageNetデータセットに基づいて、120万のトレーニング画像と40万の高品質なセマンティックセグメンテーションアノテーションを用いた画像Net-Sデータセットを提案する。
論文 参考訳(メタデータ) (2021-06-06T15:02:11Z) - Three Ways to Improve Semantic Segmentation with Self-Supervised Depth
Estimation [90.87105131054419]
ラベルなし画像列からの自己教師付き単眼深度推定により強化された半教師付きセマンティックセマンティックセマンティックセマンティクスのフレームワークを提案する。
提案されたモデルをCityscapesデータセット上で検証する。
論文 参考訳(メタデータ) (2020-12-19T21:18:03Z) - A Survey on Deep Learning Methods for Semantic Image Segmentation in
Real-Time [0.0]
ロボット工学や自動運転車など、多くの分野において、セマンティックイメージのセグメンテーションが不可欠である。
診断と治療の成功は、検討中のデータの極めて正確な理解に依存している。
近年のディープラーニングの進歩は、この問題に効果的かつ高精度に対処するためのツールを多数提供してきた。
論文 参考訳(メタデータ) (2020-09-27T20:30:10Z) - Multi-Task Learning with Deep Neural Networks: A Survey [0.0]
マルチタスク学習(Multi-task learning、MTL)は、複数のタスクを共有モデルで同時に学習する機械学習のサブフィールドである。
深層ニューラルネットワークにおけるマルチタスク学習手法の概要を述べる。
論文 参考訳(メタデータ) (2020-09-10T19:31:04Z) - Multi-Task Learning for Dense Prediction Tasks: A Survey [87.66280582034838]
マルチタスク学習(MTL)技術は、性能、計算、メモリフットプリントに関する有望な結果を示している。
我々は、コンピュータビジョンにおけるMLLのための最先端のディープラーニングアプローチについて、よく理解された視点を提供する。
論文 参考訳(メタデータ) (2020-04-28T09:15:50Z) - Pre-training Text Representations as Meta Learning [113.3361289756749]
本稿では,下流タスクを効果的に学習するために,モデルがテキスト表現を学習する能力を直接最適化する学習アルゴリズムを提案する。
マルチタスク事前学習とモデル非依存型メタラーニングの間には,一連のメタトレインステップによる本質的な関係があることが示されている。
論文 参考訳(メタデータ) (2020-04-12T09:05:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。