A Strong Baseline for Batch Imitation Learning
- URL: http://arxiv.org/abs/2302.02788v1
- Date: Mon, 6 Feb 2023 14:03:33 GMT
- Title: A Strong Baseline for Batch Imitation Learning
- Authors: Matthew Smith, Lucas Maystre, Zhenwen Dai, Kamil Ciosek
- Abstract summary: We provide an easy-to-implement, novel algorithm for imitation learning under a strict data paradigm.
This paradigm allows our algorithm to be used for environments in which safety or cost are of critical concern.
- Score: 25.392006064406967
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Imitation of expert behaviour is a highly desirable and safe approach to the
problem of sequential decision making. We provide an easy-to-implement, novel
algorithm for imitation learning under a strict data paradigm, in which the
agent must learn solely from data collected a priori. This paradigm allows our
algorithm to be used for environments in which safety or cost are of critical
concern. Our algorithm requires no additional hyper-parameter tuning beyond any
standard batch reinforcement learning (RL) algorithm, making it an ideal
baseline for such data-strict regimes. Furthermore, we provide formal sample
complexity guarantees for the algorithm in finite Markov Decision Problems. In
doing so, we formally demonstrate an unproven claim from Kearns & Singh (1998).
On the empirical side, our contribution is twofold. First, we develop a
practical, robust and principled evaluation protocol for offline RL methods,
making use of only the dataset provided for model selection. This stands in
contrast to the vast majority of previous works in offline RL, which tune
hyperparameters on the evaluation environment, limiting the practical
applicability when deployed in new, cost-critical environments. As such, we
establish precedent for the development and fair evaluation of offline RL
algorithms. Second, we evaluate our own algorithm on challenging continuous
control benchmarks, demonstrating its practical applicability and
competitiveness with state-of-the-art performance, despite being a simpler
algorithm.
Related papers
- On Sample-Efficient Offline Reinforcement Learning: Data Diversity,
Posterior Sampling, and Beyond [29.449446595110643]
We propose a notion of data diversity that subsumes the previous notions of coverage measures in offline RL.
Our proposed model-free PS-based algorithm for offline RL is novel, with sub-optimality bounds that are frequentist (i.e., worst-case) in nature.
arXiv Detail & Related papers (2024-01-06T20:52:04Z) - Iterative Preference Learning from Human Feedback: Bridging Theory and Practice for RLHF under KL-Constraint [56.74058752955209]
This paper studies the alignment process of generative models with Reinforcement Learning from Human Feedback (RLHF)
We first identify the primary challenges of existing popular methods like offline PPO and offline DPO as lacking in strategical exploration of the environment.
We propose efficient algorithms with finite-sample theoretical guarantees.
arXiv Detail & Related papers (2023-12-18T18:58:42Z) - Iteratively Refined Behavior Regularization for Offline Reinforcement
Learning [57.10922880400715]
In this paper, we propose a new algorithm that substantially enhances behavior-regularization based on conservative policy iteration.
By iteratively refining the reference policy used for behavior regularization, conservative policy update guarantees gradually improvement.
Experimental results on the D4RL benchmark indicate that our method outperforms previous state-of-the-art baselines in most tasks.
arXiv Detail & Related papers (2023-06-09T07:46:24Z) - STEEL: Singularity-aware Reinforcement Learning [14.424199399139804]
Batch reinforcement learning (RL) aims at leveraging pre-collected data to find an optimal policy.
We propose a new batch RL algorithm that allows for singularity for both state and action spaces.
By leveraging the idea of pessimism and under some technical conditions, we derive a first finite-sample regret guarantee for our proposed algorithm.
arXiv Detail & Related papers (2023-01-30T18:29:35Z) - Model-based Safe Deep Reinforcement Learning via a Constrained Proximal
Policy Optimization Algorithm [4.128216503196621]
We propose an On-policy Model-based Safe Deep RL algorithm in which we learn the transition dynamics of the environment in an online manner.
We show that our algorithm is more sample efficient and results in lower cumulative hazard violations as compared to constrained model-free approaches.
arXiv Detail & Related papers (2022-10-14T06:53:02Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
We introduce a general approach for seeking high dimensional non-linear optimization problems in which maintaining safety during learning is crucial.
Our approach called LBSGD is based on applying a logarithmic barrier approximation with a carefully chosen step size.
We demonstrate the effectiveness of our approach on minimizing violation in policy tasks in safe reinforcement learning.
arXiv Detail & Related papers (2022-07-21T11:14:47Z) - Making Linear MDPs Practical via Contrastive Representation Learning [101.75885788118131]
It is common to address the curse of dimensionality in Markov decision processes (MDPs) by exploiting low-rank representations.
We consider an alternative definition of linear MDPs that automatically ensures normalization while allowing efficient representation learning.
We demonstrate superior performance over existing state-of-the-art model-based and model-free algorithms on several benchmarks.
arXiv Detail & Related papers (2022-07-14T18:18:02Z) - Offline Policy Optimization with Eligible Actions [34.4530766779594]
offline policy optimization could have a large impact on many real-world decision-making problems.
Importance sampling and its variants are a commonly used type of estimator in offline policy evaluation.
We propose an algorithm to avoid this overfitting through a new per-state-neighborhood normalization constraint.
arXiv Detail & Related papers (2022-07-01T19:18:15Z) - PC-MLP: Model-based Reinforcement Learning with Policy Cover Guided
Exploration [15.173628100049129]
This work studies a model-based algorithm for both Kernelized Regulators (KNR) and linear Markov Decision Processes (MDPs)
For both models, our algorithm guarantees sample complexity and only uses access to a planning oracle.
Our method can also perform reward-free exploration efficiently.
arXiv Detail & Related papers (2021-07-15T15:49:30Z) - COMBO: Conservative Offline Model-Based Policy Optimization [120.55713363569845]
Uncertainty estimation with complex models, such as deep neural networks, can be difficult and unreliable.
We develop a new model-based offline RL algorithm, COMBO, that regularizes the value function on out-of-support state-actions.
We find that COMBO consistently performs as well or better as compared to prior offline model-free and model-based methods.
arXiv Detail & Related papers (2021-02-16T18:50:32Z) - MOPO: Model-based Offline Policy Optimization [183.6449600580806]
offline reinforcement learning (RL) refers to the problem of learning policies entirely from a large batch of previously collected data.
We show that an existing model-based RL algorithm already produces significant gains in the offline setting.
We propose to modify the existing model-based RL methods by applying them with rewards artificially penalized by the uncertainty of the dynamics.
arXiv Detail & Related papers (2020-05-27T08:46:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.