LaMPP: Language Models as Probabilistic Priors for Perception and Action
- URL: http://arxiv.org/abs/2302.02801v1
- Date: Fri, 3 Feb 2023 15:14:04 GMT
- Title: LaMPP: Language Models as Probabilistic Priors for Perception and Action
- Authors: Belinda Z. Li, William Chen, Pratyusha Sharma, Jacob Andreas
- Abstract summary: We show how to leverage language models for non-linguistic perception and control tasks.
Our approach casts labeling and decision-making as inference in probabilistic graphical models.
- Score: 38.07277869107474
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Language models trained on large text corpora encode rich distributional
information about real-world environments and action sequences. This
information plays a crucial role in current approaches to language processing
tasks like question answering and instruction generation. We describe how to
leverage language models for *non-linguistic* perception and control tasks. Our
approach casts labeling and decision-making as inference in probabilistic
graphical models in which language models parameterize prior distributions over
labels, decisions and parameters, making it possible to integrate uncertain
observations and incomplete background knowledge in a principled way. Applied
to semantic segmentation, household navigation, and activity recognition tasks,
this approach improves predictions on rare, out-of-distribution, and
structurally novel inputs.
Related papers
- Boosting the Capabilities of Compact Models in Low-Data Contexts with Large Language Models and Retrieval-Augmented Generation [2.9921619703037274]
We propose a retrieval augmented generation (RAG) framework backed by a large language model (LLM) to correct the output of a smaller model for the linguistic task of morphological glossing.
We leverage linguistic information to make up for the lack of data and trainable parameters, while allowing for inputs from written descriptive grammars interpreted and distilled through an LLM.
We show that a compact, RAG-supported model is highly effective in data-scarce settings, achieving a new state-of-the-art for this task and our target languages.
arXiv Detail & Related papers (2024-10-01T04:20:14Z) - Learning Phonotactics from Linguistic Informants [54.086544221761486]
Our model iteratively selects or synthesizes a data-point according to one of a range of information-theoretic policies.
We find that the information-theoretic policies that our model uses to select items to query the informant achieve sample efficiency comparable to, or greater than, fully supervised approaches.
arXiv Detail & Related papers (2024-05-08T00:18:56Z) - An Overview on Language Models: Recent Developments and Outlook [32.528770408502396]
Conventional language models (CLMs) aim to predict the probability of linguistic sequences in a causal manner.
Pre-trained language models (PLMs) cover broader concepts and can be used in both causal sequential modeling and fine-tuning for downstream applications.
arXiv Detail & Related papers (2023-03-10T07:55:00Z) - Few-shot Subgoal Planning with Language Models [58.11102061150875]
We show that language priors encoded in pre-trained language models allow us to infer fine-grained subgoal sequences.
In contrast to recent methods which make strong assumptions about subgoal supervision, our experiments show that language models can infer detailed subgoal sequences without any fine-tuning.
arXiv Detail & Related papers (2022-05-28T01:03:30Z) - Analyzing the Limits of Self-Supervision in Handling Bias in Language [52.26068057260399]
We evaluate how well language models capture the semantics of four tasks for bias: diagnosis, identification, extraction and rephrasing.
Our analyses indicate that language models are capable of performing these tasks to widely varying degrees across different bias dimensions, such as gender and political affiliation.
arXiv Detail & Related papers (2021-12-16T05:36:08Z) - Probing Linguistic Information For Logical Inference In Pre-trained
Language Models [2.4366811507669124]
We propose a methodology for probing linguistic information for logical inference in pre-trained language model representations.
We find that (i) pre-trained language models do encode several types of linguistic information for inference, but there are also some types of information that are weakly encoded.
We have demonstrated language models' potential as semantic and background knowledge bases for supporting symbolic inference methods.
arXiv Detail & Related papers (2021-12-03T07:19:42Z) - Differentiable Prompt Makes Pre-trained Language Models Better Few-shot
Learners [23.150999852147283]
This study proposes a novel pluggable, and efficient approach named DifferentiAble pRompT (DART)
It can convert small language models into better few-shot learners without any prompt engineering.
A comprehensive evaluation of standard NLP tasks demonstrates that the proposed approach achieves a better few-shot performance.
arXiv Detail & Related papers (2021-08-30T12:29:25Z) - Cross-lingual Spoken Language Understanding with Regularized
Representation Alignment [71.53159402053392]
We propose a regularization approach to align word-level and sentence-level representations across languages without any external resource.
Experiments on the cross-lingual spoken language understanding task show that our model outperforms current state-of-the-art methods in both few-shot and zero-shot scenarios.
arXiv Detail & Related papers (2020-09-30T08:56:53Z) - How Context Affects Language Models' Factual Predictions [134.29166998377187]
We integrate information from a retrieval system with a pre-trained language model in a purely unsupervised way.
We report that augmenting pre-trained language models in this way dramatically improves performance and that the resulting system, despite being unsupervised, is competitive with a supervised machine reading baseline.
arXiv Detail & Related papers (2020-05-10T09:28:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.