High-momentum oscillating tails of strongly interacting 1D gases in a
box
- URL: http://arxiv.org/abs/2302.02828v2
- Date: Mon, 19 Jun 2023 14:04:01 GMT
- Title: High-momentum oscillating tails of strongly interacting 1D gases in a
box
- Authors: Gianni Aupetit-Diallo, Silvia Musolino, Mathias Albert and Patrizia
Vignolo
- Abstract summary: We study the momentum distribution of strongly interacting mixtures of particles at zero temperature in a box potential.
We find that the magnitude of the $1/k4$ tail of the momentum distribution is not only due to short-distance correlations, but also to the presence of the rigid walls.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the momentum distribution of strongly interacting one-dimensional
mixtures of particles at zero temperature in a box potential. We find that the
magnitude of the $1/k^4$ tail of the momentum distribution is not only due to
short-distance correlations, but also to the presence of the rigid walls,
breaking the Tan's relation relating this quantity to the adiabatic derivative
of the energy with respect to the inverse of the interaction strength. The
additional contribution is a finite-size effect that includes a $k$-independent
and an oscillating part. This latter, surprisingly, encodes information on
long-range spin correlations.
Related papers
- Waveguide QED at the onset of spin-spin correlations [36.136619420474766]
We find that molecules belonging to the crystal sublattice B form one-dimensional spin chains.
The microwave transmission shows evidences for the collective coupling of quasi-identical spins to the propagating photons.
arXiv Detail & Related papers (2024-04-04T18:00:05Z) - The quantum Hall effect under the influence of gravity and inertia: A
unified approach [44.99833362998488]
We examine how both the integer and the fractional quantum Hall effects behave under a combined influence of gravity and inertia.
The general Hamiltonian for describing the combined effect of gravity, rotation and inertia on the electrons of a Hall sample is then built and the eigenstates are obtained.
arXiv Detail & Related papers (2024-03-11T18:01:55Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Coexistence of directed momentum current and ballistic energy diffusion
in coupled non-Hermitian kicked rotors [3.508079697055564]
We numerically investigate the quantum transport in a coupled kicked rotors with the $mathcalPT$-symmetric potential.
We find that the spontaneous $mathcalPT$-symmetry breaking of wavefunctions emerges when the amplitude of the imaginary part of the complex potential is beyond a threshold value.
arXiv Detail & Related papers (2022-11-02T02:17:13Z) - Full counting statistics of interacting lattice gases after an
expansion: The role of the condensate depletion in the many-body coherence [55.41644538483948]
We study the full counting statistics (FCS) of quantum gases in samples of thousands of interacting bosons.
FCS reveals the many-body coherence from which we characterize iconic states of interacting lattice bosons.
arXiv Detail & Related papers (2022-07-28T13:21:57Z) - In-Gap Band Formation in a Periodically Driven Charge Density Wave
Insulator [68.8204255655161]
Periodically driven quantum many-body systems host unconventional behavior not realized at equilibrium.
We investigate such a setup for strongly interacting spinless fermions on a chain, which at zero temperature and strong interactions form a charge density wave insulator.
arXiv Detail & Related papers (2022-05-19T13:28:47Z) - Breakdown of Tan's relation in lossy one-dimensional Bose gases [0.0]
Tan's relation connects the amplitude of that $1/|p|4$ tail to the adiabatic derivative of the energy.
The relation breaks down in the one-dimensional Bose gas with contact repulsion, for a peculiar class of stationary states.
arXiv Detail & Related papers (2020-11-26T11:41:44Z) - Enhanced decoherence for a neutral particle sliding on a metallic
surface in vacuum [68.8204255655161]
We show that non-contact friction enhances the decoherence of the moving atom.
We suggest that measuring decoherence times through velocity dependence of coherences could indirectly demonstrate the existence of quantum friction.
arXiv Detail & Related papers (2020-11-06T17:34:35Z) - Position- and momentum-space two-body correlations in a weakly
interacting trapped condensate [0.0]
We investigate a weakly interacting, harmonically trapped atomic Bose-Einstein condensed gas at low temperatures.
In the position space, we recover the anti-bunching induced by the repulsive inter-atomic interaction.
In the momentum space, bunching signatures appear for either equal or opposite values of the momentum.
arXiv Detail & Related papers (2020-08-29T19:22:55Z) - Emergence of Intra-Particle Entanglement and Time-Varying Violation of
Bell's Inequality in Dirac Matter [0.0]
We show the emergence and dynamics of intra-particle entanglement in Dirac fermions.
The entanglement is a complex dynamic quantity but is generally large, independent of the initial state.
These features are also expected to impact entanglement between pairs of particles, and may be detectable in experiments that combine Cooper pair splitting with nonlocal measurements of spin-spin correlation in mesoscopic devices based on Dirac materials.
arXiv Detail & Related papers (2020-07-03T09:55:09Z) - Many-body effects on second-order phase transitions in spinor
Bose-Einstein condensates and breathing dynamics [0.0]
We unravel the correlation effects of the second-order quantum phase transitions emerging on the ground state of a harmonically trapped spin-1 Bose gas.
It is found that the boundaries of the associated magnetic phases are altered in the presence of interparticle correlations for both ferromagnetic and anti-ferromagnetic spin-spin interactions.
We demonstrate that for an initial broken-axisymmetry phase an enhanced spin-flip dynamics takes place which can be tuned either via the linear Zeeman term or the quench amplitude.
arXiv Detail & Related papers (2020-04-17T10:29:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.