論文の概要: Uncertainty estimation for time series forecasting via Gaussian process
regression surrogates
- arxiv url: http://arxiv.org/abs/2302.02834v1
- Date: Mon, 6 Feb 2023 14:52:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-07 16:29:24.768077
- Title: Uncertainty estimation for time series forecasting via Gaussian process
regression surrogates
- Title(参考訳): ガウス過程回帰法による時系列予測の不確実性推定
- Authors: Leonid Erlygin, Vladimir Zholobov, Valeriia Baklanova, Evgeny
Sokolovskiy, Alexey Zaytsev
- Abstract要約: 代用ガウス過程モデルに基づく不確実性推定法を提案する。
提案手法は,任意のベースモデルに対して,個別のサロゲートが生成した正確な不確実性推定を行うことができる。
他の手法と比較して、見積もりは1つの追加モデルだけで計算的に有効である。
- 参考スコア(独自算出の注目度): 0.8733767481819791
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Machine learning models are widely used to solve real-world problems in
science and industry. To build robust models, we should quantify the
uncertainty of the model's predictions on new data. This study proposes a new
method for uncertainty estimation based on the surrogate Gaussian process
model. Our method can equip any base model with an accurate uncertainty
estimate produced by a separate surrogate. Compared to other approaches, the
estimate remains computationally effective with training only one additional
model and doesn't rely on data-specific assumptions. The only requirement is
the availability of the base model as a black box, which is typical.
Experiments for challenging time-series forecasting data show that surrogate
model-based methods provide more accurate confidence intervals than
bootstrap-based methods in both medium and small-data regimes and different
families of base models, including linear regression, ARIMA, and gradient
boosting.
- Abstract(参考訳): 機械学習モデルは、科学と産業の現実世界の問題を解決するために広く使われている。
堅牢なモデルを構築するためには、新しいデータに対するモデルの予測の不確かさを定量化する必要がある。
本研究では,代用ガウス過程モデルに基づく不確実性推定手法を提案する。
提案手法は,任意のベースモデルに対して,個別のサロゲートが生成した正確な不確実性推定を行うことができる。
他の手法と比較して、見積もりは1つの追加モデルだけで計算的に有効であり、データ固有の仮定に依存しない。
唯一の要件は、典型的なブラックボックスとしてベースモデルの可用性である。
時系列予測データに挑戦する実験により, 線形回帰, ARIMA, 勾配向上など, 中小いずれのモデルにおいても, ブートストラップに基づく手法よりも精度の高い信頼区間が得られた。
関連論文リスト
- Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
本稿では,強化学習に基づく学習可能なデータ拡張手法であるAutoTSAugを紹介する。
限界サンプルを学習可能なポリシーで強化することにより、AutoTSAugは予測性能を大幅に改善する。
論文 参考訳(メタデータ) (2024-09-10T07:34:19Z) - Source-Free Domain-Invariant Performance Prediction [68.39031800809553]
本研究では,不確実性に基づく推定を主軸としたソースフリー手法を提案する。
オブジェクト認識データセットのベンチマーク実験により、既存のソースベースの手法は、限られたソースサンプルの可用性で不足していることが判明した。
提案手法は,現在の最先端のソースフリーおよびソースベース手法よりも優れており,ドメイン不変性能推定の有効性が確認されている。
論文 参考訳(メタデータ) (2024-08-05T03:18:58Z) - Bayesian Deep Learning for Remaining Useful Life Estimation via Stein
Variational Gradient Descent [14.784809634505903]
本研究では,スタイン変分勾配勾配を用いたベイズ学習モデルが収束速度と予測性能に対して一貫して優れていたことを示す。
ベイズモデルが提供する不確実性情報に基づく性能向上手法を提案する。
論文 参考訳(メタデータ) (2024-02-02T02:21:06Z) - Post-hoc Uncertainty Learning using a Dirichlet Meta-Model [28.522673618527417]
本研究では,不確実性定量化能力の優れた事前学習モデルを構築するための新しいベイズメタモデルを提案する。
提案手法は追加のトレーニングデータを必要としないため,不確かさの定量化に十分な柔軟性がある。
提案するメタモデルアプローチの柔軟性と,これらのアプリケーションに対する優れた経験的性能を実証する。
論文 参考訳(メタデータ) (2022-12-14T17:34:11Z) - Transfer Learning with Uncertainty Quantification: Random Effect
Calibration of Source to Target (RECaST) [1.8047694351309207]
我々はRECaSTと呼ばれる伝達学習に基づくモデル予測のための統計的枠組みを開発する。
線形モデル間の伝達学習におけるRECaST手法の有効性を数学的・実験的に実証した。
シミュレーション研究における本手法の性能と実際の病院データへの適用について検討する。
論文 参考訳(メタデータ) (2022-11-29T19:39:47Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
階層型モデル選択は、推定困難のため、ディープラーニングではほとんど使われない。
本研究は,検証データが利用できない場合,限界的可能性によって一般化が向上し,有用であることを示す。
論文 参考訳(メタデータ) (2021-04-11T09:50:24Z) - Learning Prediction Intervals for Model Performance [1.433758865948252]
モデル性能の予測間隔を計算する手法を提案する。
我々は,幅広いドリフト条件におけるアプローチを評価し,競合ベースラインよりも大幅に改善することを示す。
論文 参考訳(メタデータ) (2020-12-15T21:32:03Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z) - Robust Validation: Confident Predictions Even When Distributions Shift [19.327409270934474]
本稿では,モデルが点予測ではなく,その予測に対して不確実な推定を行うような,頑健な予測推論の手順について述べる。
本稿では, トレーニング集団の周囲に$f$-divergence のボールを用いて, 任意のテスト分布に対して適切なカバレッジレベルを与える予測セットを生成する手法を提案する。
私たちの方法論の重要な構成要素は、将来のデータシフトの量を見積り、それに対する堅牢性を構築することです。
論文 参考訳(メタデータ) (2020-08-10T17:09:16Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。