論文の概要: Learning Augmentation Policies from A Model Zoo for Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2409.06282v1
- Date: Tue, 10 Sep 2024 07:34:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 18:40:09.149776
- Title: Learning Augmentation Policies from A Model Zoo for Time Series Forecasting
- Title(参考訳): 時系列予測のためのモデル動物園からの学習増強策
- Authors: Haochen Yuan, Xuelin Li, Yunbo Wang, Xiaokang Yang,
- Abstract要約: 本稿では,強化学習に基づく学習可能なデータ拡張手法であるAutoTSAugを紹介する。
限界サンプルを学習可能なポリシーで強化することにより、AutoTSAugは予測性能を大幅に改善する。
- 参考スコア(独自算出の注目度): 58.66211334969299
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series forecasting models typically rely on a fixed-size training set and treat all data uniformly, which may not effectively capture the specific patterns present in more challenging training samples. To address this issue, we introduce AutoTSAug, a learnable data augmentation method based on reinforcement learning. Our approach begins with an empirical analysis to determine which parts of the training data should be augmented. Specifically, we identify the so-called marginal samples by considering the prediction diversity across a set of pretrained forecasting models. Next, we propose using variational masked autoencoders as the augmentation model and applying the REINFORCE algorithm to transform the marginal samples into new data. The goal of this generative model is not only to mimic the distribution of real data but also to reduce the variance of prediction errors across the model zoo. By augmenting the marginal samples with a learnable policy, AutoTSAug substantially improves forecasting performance, advancing the prior art in this field with minimal additional computational cost.
- Abstract(参考訳): 時系列予測モデルは、通常、固定サイズのトレーニングセットに依存し、すべてのデータを均一に扱う。
この問題に対処するために,強化学習に基づく学習可能なデータ拡張手法であるAutoTSAugを紹介する。
私たちのアプローチは、トレーニングデータのどの部分を拡張すべきかを決定するための経験的分析から始まります。
具体的には,事前学習した予測モデル間の予測の多様性を考慮し,いわゆる辺縁標本を同定する。
次に、変動マスク付きオートエンコーダを拡張モデルとして使用し、ReINFORCEアルゴリズムを用いて、限界サンプルを新しいデータに変換することを提案する。
この生成モデルの目標は、実際のデータの分布を模倣するだけでなく、モデル動物園全体の予測誤差のばらつきを低減することである。
学習可能なポリシで限界サンプルを拡大することにより、AutoTSAugは予測性能を大幅に向上し、この分野での先行技術は最小限の計算コストで進歩する。
関連論文リスト
- TimeRAF: Retrieval-Augmented Foundation model for Zero-shot Time Series Forecasting [59.702504386429126]
TimeRAFは検索拡張技術によるゼロショット時系列予測を強化する検索拡張予測モデルである。
TimeRAFは、エンド・ツー・エンドの学習可能なレトリバーを使用して、知識ベースから貴重な情報を抽出する。
論文 参考訳(メタデータ) (2024-12-30T09:06:47Z) - Accelerating Large Language Model Pretraining via LFR Pedagogy: Learn, Focus, and Review [50.78587571704713]
Learn-Focus-Review(LFR)は、モデルの学習進捗に適応する動的トレーニングアプローチである。
LFRは、データブロック(トークンのシーケンス)にわたるモデルの学習パフォーマンスを追跡し、データセットの困難な領域を再検討する。
フルデータセットでトレーニングされたベースラインモデルと比較して、LFRは一貫して低いパープレキシティと高い精度を達成した。
論文 参考訳(メタデータ) (2024-09-10T00:59:18Z) - Data Augmentation for Multivariate Time Series Classification: An Experimental Study [1.5390962520179197]
これらのデータセットのサイズは限られていますが、RocketとInceptionTimeモデルを使用して、13のデータセットのうち10の分類精度を向上しました。
これは、コンピュータビジョンで見られる進歩と並行して、効果的なモデルを訓練する上で、十分なデータの重要性を強調している。
論文 参考訳(メタデータ) (2024-06-10T17:58:02Z) - Time Series Contrastive Learning with Information-Aware Augmentations [57.45139904366001]
コントラスト学習の鍵となる要素は、いくつかの先行を示唆する適切な拡張を選択して、実現可能な正のサンプルを構築することである。
対照的な学習タスクやデータセットに意味のある時系列データの増大をどうやって見つけるかは、未解決の問題である。
本稿では,時系列表現学習のための最適な拡張を適応的に選択する情報認識拡張を用いた新しいコントラスト学習手法であるInfoTSを提案する。
論文 参考訳(メタデータ) (2023-03-21T15:02:50Z) - FrAug: Frequency Domain Augmentation for Time Series Forecasting [6.508992154478217]
データ拡張(DA)は、ディープラーニングのためのトレーニングデータサイズを拡張するデファクトソリューションになっています。
本稿では、予測における拡張データ-ラベルペアのセマンティック一貫性を保証するための、単純で効果的な周波数領域拡張手法を提案する。
その結果,ほとんどの場合,FrAugはTSFモデルの予測精度を高めることができることがわかった。
論文 参考訳(メタデータ) (2023-02-18T11:25:42Z) - An Empirical Study on Distribution Shift Robustness From the Perspective
of Pre-Training and Data Augmentation [91.62129090006745]
本稿では,事前学習とデータ拡張の観点から分布シフト問題を考察する。
我々は,事前学習とデータ拡張に焦点を当てた,最初の総合的な実証的研究を行った。
論文 参考訳(メタデータ) (2022-05-25T13:04:53Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z) - Improving the Accuracy of Global Forecasting Models using Time Series
Data Augmentation [7.38079566297881]
GFM(Global Forecasting Models)として知られる多くの時系列のセットでトレーニングされた予測モデルは、競争や実世界のアプリケーションを予測する上で有望な結果を示している。
本稿では,GFMモデルのベースライン精度を向上させるための,データ拡張に基づく新しい予測フレームワークを提案する。
論文 参考訳(メタデータ) (2020-08-06T13:52:20Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。