Efficient XAI Techniques: A Taxonomic Survey
- URL: http://arxiv.org/abs/2302.03225v2
- Date: Thu, 16 Feb 2023 02:05:48 GMT
- Title: Efficient XAI Techniques: A Taxonomic Survey
- Authors: Yu-Neng Chuang, Guanchu Wang, Fan Yang, Zirui Liu, Xuanting Cai,
Mengnan Du, and Xia Hu
- Abstract summary: We review existing techniques of XAI acceleration into efficient non-amortized and efficient amortized methods.
We analyze the limitations of an efficient XAI pipeline from the perspectives of the training phase, the deployment phase, and the use scenarios.
- Score: 40.74369038951756
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, there has been a growing demand for the deployment of Explainable
Artificial Intelligence (XAI) algorithms in real-world applications. However,
traditional XAI methods typically suffer from a high computational complexity
problem, which discourages the deployment of real-time systems to meet the
time-demanding requirements of real-world scenarios. Although many approaches
have been proposed to improve the efficiency of XAI methods, a comprehensive
understanding of the achievements and challenges is still needed. To this end,
in this paper we provide a review of efficient XAI. Specifically, we categorize
existing techniques of XAI acceleration into efficient non-amortized and
efficient amortized methods. The efficient non-amortized methods focus on
data-centric or model-centric acceleration upon each individual instance. In
contrast, amortized methods focus on learning a unified distribution of model
explanations, following the predictive, generative, or reinforcement
frameworks, to rapidly derive multiple model explanations. We also analyze the
limitations of an efficient XAI pipeline from the perspectives of the training
phase, the deployment phase, and the use scenarios. Finally, we summarize the
challenges of deploying XAI acceleration methods to real-world scenarios,
overcoming the trade-off between faithfulness and efficiency, and the selection
of different acceleration methods.
Related papers
- RLER-TTE: An Efficient and Effective Framework for En Route Travel Time Estimation with Reinforcement Learning [5.4674463400564886]
En Route Travel Time Estimation aims to learn driving patterns from traveled routes to achieve rapid and accurate real-time predictions.
Existing methods ignore the complexity and dynamism of real-world traffic systems, resulting in significant gaps in efficiency and accuracy in real-time scenarios.
This paper proposes a novel framework that redefines the path implementation of ER-TTE to achieve highly efficient and effective predictions.
arXiv Detail & Related papers (2025-01-26T11:49:34Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
Large-scale Mixture of Experts (MoE) models offer enhanced model capacity and computational efficiency through conditional computation.
deploying and running inference on these models presents significant challenges in computational resources, latency, and energy efficiency.
This survey analyzes optimization techniques for MoE models across the entire system stack.
arXiv Detail & Related papers (2024-12-18T14:11:15Z) - Explainable AI for Enhancing Efficiency of DL-based Channel Estimation [1.0136215038345013]
Support of artificial intelligence based decision-making is a key element in future 6G networks.
In such applications, using AI as black-box models is risky and challenging.
We propose a novel-based XAI-CHEST framework that is oriented toward channel estimation in wireless communications.
arXiv Detail & Related papers (2024-07-09T16:24:21Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - REX: Rapid Exploration and eXploitation for AI Agents [103.68453326880456]
We propose an enhanced approach for Rapid Exploration and eXploitation for AI Agents called REX.
REX introduces an additional layer of rewards and integrates concepts similar to Upper Confidence Bound (UCB) scores, leading to more robust and efficient AI agent performance.
arXiv Detail & Related papers (2023-07-18T04:26:33Z) - Hardware Acceleration of Explainable Artificial Intelligence [5.076419064097733]
We propose a simple yet efficient framework to accelerate various XAI algorithms with existing hardware accelerators.
Our proposed approach can lead to real-time outcome interpretation.
arXiv Detail & Related papers (2023-05-04T19:07:29Z) - An Accelerated Doubly Stochastic Gradient Method with Faster Explicit
Model Identification [97.28167655721766]
We propose a novel doubly accelerated gradient descent (ADSGD) method for sparsity regularized loss minimization problems.
We first prove that ADSGD can achieve a linear convergence rate and lower overall computational complexity.
arXiv Detail & Related papers (2022-08-11T22:27:22Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z) - Efficient falsification approach for autonomous vehicle validation using
a parameter optimisation technique based on reinforcement learning [6.198523595657983]
The widescale deployment of Autonomous Vehicles (AV) appears to be imminent despite many safety challenges that are yet to be resolved.
The uncertainties in the behaviour of the traffic participants and the dynamic world cause reactions in advanced autonomous systems.
This paper presents an efficient falsification method to evaluate the System Under Test.
arXiv Detail & Related papers (2020-11-16T02:56:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.