Qualitative quantum simulation of resonant tunneling and localization
with the shallow quantum circuits
- URL: http://arxiv.org/abs/2302.03249v1
- Date: Tue, 7 Feb 2023 04:21:38 GMT
- Title: Qualitative quantum simulation of resonant tunneling and localization
with the shallow quantum circuits
- Authors: P. Wang
- Abstract summary: In a circuit-based quantum computer, the computing is performed via the discrete-time evolution driven by quantum gates.
We show that shallow quantum circuits are sufficient to qualitatively observe some typical quantum phenomena in the continuous-time evolution limit.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In a circuit-based quantum computer, the computing is performed via the
discrete-time evolution driven by quantum gates. Accurate simulation of
continuoustime evolution requires a large number of quantum gates and therefore
suffers from more noise. In this paper, we find that shallow quantum circuits
are sufficient to qualitatively observe some typical quantum phenomena in the
continuous-time evolution limit, such as resonant tunneling and localization
phenomena. We study the propagation of a spin excitation in Trotter circuits
with a large step size. The circuits are formed of two types of two-qubit
gates, i.e. XY gates and controlled- Rx gates, and single-qubit Rz gates. The
configuration of the Rz gates determines the distribution of the spin
excitation at the end of evolution. We demonstrate the resonant tunneling with
up to four steps and the localization phenomenon with dozens of steps in
Trotter circuits. Our results show that the circuit depth required for
qualitative observation of some significant quantum phenomena is much smaller
than that required for quantitative computation, suggesting that it is feasible
to apply qualitative observations to near-term quantum computers. We also
provide a way to use the physics laws to understand the error propagation in
quantum circuits.
Related papers
- QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Resource-Efficient Quantum Circuits for Molecular Simulations: A Case
Study of Umbrella Inversion in Ammonia [1.439738350540859]
We develop a novel quantum circuit that reduces the required circuit depth and number of two-qubit entangling gates by about 60%.
Even in the presence of device noise, these novel shallower circuits yielded substantially low error rates.
arXiv Detail & Related papers (2023-12-07T11:30:09Z) - Diamond-shaped quantum circuit for real-time quantum dynamics in one
dimension [0.0]
We show that quantum many-body states can be universally represented using a quantum circuit comprising multi-qubit gates.
We also evaluate the efficiency of a quantum circuit constructed with two-qubit gates in quench dynamics for the transverse-field Ising model.
Our results reveal that a diamond-shaped quantum circuit, designed to approximate the multi-qubit gate-based quantum circuit, remarkably excels in accurately representing the long-time dynamics of the system.
arXiv Detail & Related papers (2023-11-10T07:07:54Z) - Gaussian initializations help deep variational quantum circuits escape
from the barren plateau [87.04438831673063]
Variational quantum circuits have been widely employed in quantum simulation and quantum machine learning in recent years.
However, quantum circuits with random structures have poor trainability due to the exponentially vanishing gradient with respect to the circuit depth and the qubit number.
This result leads to a general belief that deep quantum circuits will not be feasible for practical tasks.
arXiv Detail & Related papers (2022-03-17T15:06:40Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
Unitary evolution under a time dependent Hamiltonian is a key component of simulation on quantum hardware.
We present an algorithm that compresses the Trotter steps into a single block of quantum gates.
This results in a fixed depth time evolution for certain classes of Hamiltonians.
arXiv Detail & Related papers (2021-08-06T19:38:01Z) - High-fidelity geometric quantum gates with short paths on
superconducting circuits [5.666193021459319]
We propose a scheme to realize nonadiabatic geometric quantum gates with short paths based on simple pulse control techniques.
Specifically, we illustrate the idea on a superconducting quantum circuit, which is one of the most promising platforms for realizing practical quantum computer.
arXiv Detail & Related papers (2021-02-06T10:13:05Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Reinforcement Learning for Digital Quantum Simulation [0.0]
We introduce a reinforcement learning algorithm to build optimized quantum circuits for digital quantum simulation.
We consistently obtain quantum circuits that reproduce physical observables with as little as three entangling gates for long times and large system sizes.
arXiv Detail & Related papers (2020-06-29T18:00:11Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.