論文の概要: Federated Variational Inference Methods for Structured Latent Variable
Models
- arxiv url: http://arxiv.org/abs/2302.03314v1
- Date: Tue, 7 Feb 2023 08:35:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-08 16:59:15.772038
- Title: Federated Variational Inference Methods for Structured Latent Variable
Models
- Title(参考訳): 構造化潜在変数モデルに対するフェデレーション変分推定法
- Authors: Conor Hassan, Robert Salomone, Kerrie Mengersen
- Abstract要約: フェデレートされた学習方法は、異なるソースにまたがるデータを使用してモデルトレーニングを行うが、同時にデータが元のソースを離れることはない。
上記の問題に対して、一般的な、しかしエレガントな解決法を提示します。
このアプローチは、ベイズ機械学習で広く使われている構造的変動推論をフェデレートされた設定に適用することに基づいている。
- 参考スコア(独自算出の注目度): 1.0312968200748118
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning methods, that is, methods that perform model training
using data situated across different sources, whilst simultaneously not having
the data leave their original source, are of increasing interest in a number of
fields. However, despite this interest, the classes of models for which
easily-applicable and sufficiently general approaches are available is limited,
excluding many structured probabilistic models. We present a general yet
elegant resolution to the aforementioned issue. The approach is based on
adopting structured variational inference, an approach widely used in Bayesian
machine learning, to the federated setting. Additionally, a
communication-efficient variant analogous to the canonical FedAvg algorithm is
explored. The effectiveness of the proposed algorithms are demonstrated, and
their performance is compared on Bayesian multinomial regression, topic
modelling, and mixed model examples.
- Abstract(参考訳): フェデレーション学習法(federated learning method)とは、異なるソースにまたがるデータを使用してモデルトレーニングを行う方法であり、同時にデータが元のソースを離れない方法である。
しかし、この関心にもかかわらず、容易に適用可能で十分に一般的なアプローチが利用できるモデルのクラスは、多くの構造化確率モデルを除いて限定的である。
我々は,上記の問題に対する一般論とエレガントな解決を提示する。
このアプローチは、ベイズ機械学習で広く使われている構造的変動推論をフェデレートされた設定に適用することに基づいている。
さらに、標準FedAvgアルゴリズムに類似した通信効率のよい変種を探索する。
提案アルゴリズムの有効性を実証し,ベイズ多項回帰,トピックモデリング,混合モデル例と比較した。
関連論文リスト
- Variational Autoencoders for Efficient Simulation-Based Inference [0.3495246564946556]
本稿では、確率自由なシミュレーションに基づく推論のための変分推論フレームワークに基づく生成的モデリング手法を提案する。
我々は,これらのモデルの有効性を,フローベースアプローチに匹敵する結果が得られるように,確立されたベンチマーク問題に対して示す。
論文 参考訳(メタデータ) (2024-11-21T12:24:13Z) - Flexible inference in heterogeneous and attributed multilayer networks [21.349513661012498]
我々は任意の種類の情報を持つ多層ネットワークで推論を行う確率的生成モデルを開発した。
インド農村部における社会支援ネットワークにおける様々なパターンを明らかにする能力を示す。
論文 参考訳(メタデータ) (2024-05-31T15:21:59Z) - BEND: Bagging Deep Learning Training Based on Efficient Neural Network Diffusion [56.9358325168226]
BEND(Efficient Neural Network Diffusion)に基づくバッグング深層学習学習アルゴリズムを提案する。
我々のアプローチは単純だが効果的であり、まず複数のトレーニングされたモデルの重みとバイアスを入力として、オートエンコーダと潜伏拡散モデルを訓練する。
提案したBENDアルゴリズムは,元のトレーニングモデルと拡散モデルの両方の平均および中央値の精度を一貫して向上させることができる。
論文 参考訳(メタデータ) (2024-03-23T08:40:38Z) - Implicit Variational Inference for High-Dimensional Posteriors [7.924706533725115]
変分推論において、ベイズモデルの利点は、真の後続分布を正確に捉えることに依存する。
複雑な多重モーダルおよび相関後部を近似するのに適した暗黙分布を特定するニューラルサンプリング手法を提案する。
提案手法では,ニューラルネットワークを局所的に線形化することにより,暗黙分布を用いた近似推論の新たなバウンダリを導入する。
論文 参考訳(メタデータ) (2023-10-10T14:06:56Z) - Faster Adaptive Federated Learning [84.38913517122619]
フェデレートラーニングは分散データの出現に伴って注目を集めている。
本稿では,クロスサイロFLにおけるモーメントに基づく分散低減手法に基づく適応アルゴリズム(FAFED)を提案する。
論文 参考訳(メタデータ) (2022-12-02T05:07:50Z) - Model-Based Deep Learning: On the Intersection of Deep Learning and
Optimization [101.32332941117271]
決定アルゴリズムは様々なアプリケーションで使われている。
数理モデルに頼らずにデータから調整された高度パラメトリックアーキテクチャを使用するディープラーニングアプローチが、ますます人気が高まっている。
モデルに基づく最適化とデータ中心のディープラーニングは、しばしば異なる規律とみなされる。
論文 参考訳(メタデータ) (2022-05-05T13:40:08Z) - Deep Variational Models for Collaborative Filtering-based Recommender
Systems [63.995130144110156]
ディープラーニングは、リコメンダシステムの結果を改善するために、正確な協調フィルタリングモデルを提供する。
提案するモデルは, 深層建築の潜伏空間において, 変分概念を注入性に適用する。
提案手法は, 入射雑音効果を超える変動エンリッチメントのシナリオにおいて, 提案手法の優位性を示す。
論文 参考訳(メタデータ) (2021-07-27T08:59:39Z) - Fully differentiable model discovery [0.0]
ニューラルネットワークに基づくサロゲートとスパースベイズ学習を組み合わせたアプローチを提案する。
我々の研究は、PINNを様々なタイプのニューラルネットワークアーキテクチャに拡張し、ニューラルネットワークベースのサロゲートをベイズパラメータ推論のリッチフィールドに接続する。
論文 参考訳(メタデータ) (2021-06-09T08:11:23Z) - Clustered Federated Learning via Generalized Total Variation
Minimization [83.26141667853057]
本研究では,分散ネットワーク構造を持つローカルデータセットの局所的(あるいはパーソナライズされた)モデルを学習するための最適化手法について検討する。
我々の主要な概念的貢献は、総変動最小化(GTV)としてフェデレーション学習を定式化することである。
私たちのアルゴリズムの主な貢献は、完全に分散化されたフェデレーション学習アルゴリズムです。
論文 参考訳(メタデータ) (2021-05-26T18:07:19Z) - Deep Conditional Transformation Models [0.0]
特徴集合上の結果変数条件の累積分布関数(CDF)を学習することは依然として困難である。
条件変換モデルは、条件付きCDFの大規模なクラスをモデル化できる半パラメトリックなアプローチを提供する。
我々は,新しいネットワークアーキテクチャを提案し,異なるモデル定義の詳細を提供し,適切な制約を導出する。
論文 参考訳(メタデータ) (2020-10-15T16:25:45Z) - Model Fusion with Kullback--Leibler Divergence [58.20269014662046]
異種データセットから学習した後続分布を融合する手法を提案する。
我々のアルゴリズムは、融合モデルと個々のデータセット後部の両方に対する平均場仮定に依存している。
論文 参考訳(メタデータ) (2020-07-13T03:27:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。