Diverse Probabilistic Trajectory Forecasting with Admissibility
Constraints
- URL: http://arxiv.org/abs/2302.03462v1
- Date: Tue, 7 Feb 2023 13:36:27 GMT
- Title: Diverse Probabilistic Trajectory Forecasting with Admissibility
Constraints
- Authors: Laura Calem, Hedi Ben-Younes, Patrick P\'erez, Nicolas Thome
- Abstract summary: We propose a novel method for structured prediction of diverse trajectories.
We combine these two novel components with a gating operation, ensuring that the predictions are both diverse and within the drivable area.
We demonstrate on the nuScenes driving dataset the relevance of our compound approach.
- Score: 19.977040198878978
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predicting multiple trajectories for road users is important for automated
driving systems: ego-vehicle motion planning indeed requires a clear view of
the possible motions of the surrounding agents. However, the generative models
used for multiple-trajectory forecasting suffer from a lack of diversity in
their proposals. To avoid this form of collapse, we propose a novel method for
structured prediction of diverse trajectories. To this end, we complement an
underlying pretrained generative model with a diversity component, based on a
determinantal point process (DPP). We balance and structure this diversity with
the inclusion of knowledge-based quality constraints, independent from the
underlying generative model. We combine these two novel components with a
gating operation, ensuring that the predictions are both diverse and within the
drivable area. We demonstrate on the nuScenes driving dataset the relevance of
our compound approach, which yields significant improvements in the diversity
and the quality of the generated trajectories.
Related papers
- Diffusion-Based Environment-Aware Trajectory Prediction [3.1406146587437904]
The ability to predict the future trajectories of traffic participants is crucial for the safe and efficient operation of autonomous vehicles.
In this paper, a diffusion-based generative model for multi-agent trajectory prediction is proposed.
The model is capable of capturing the complex interactions between traffic participants and the environment, accurately learning the multimodal nature of the data.
arXiv Detail & Related papers (2024-03-18T10:35:15Z) - Bridging the Gap Between Multi-Step and One-Shot Trajectory Prediction
via Self-Supervision [2.365702128814616]
Accurate vehicle trajectory prediction is an unsolved problem in autonomous driving.
We propose a middle-ground where multiple trajectory segments are chained together.
Our proposed Multi-Branch Self-Supervised Predictor receives additional training on new predictions starting at intermediate future segments.
arXiv Detail & Related papers (2023-06-06T02:46:28Z) - Uncertainty-Aware Pedestrian Trajectory Prediction via Distributional Diffusion [26.715578412088327]
We present a model-agnostic uncertainty-aware pedestrian trajectory prediction framework.
Unlike previous studies, we translate the predictiveity to explicit distributions, allowing it to generate plausible future trajectories.
Our framework is compatible with different neural net architectures.
arXiv Detail & Related papers (2023-03-15T04:58:43Z) - Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction [71.97877759413272]
Trajectory prediction is a safety-critical tool for autonomous vehicles to plan and execute actions.
Recent methods have achieved strong performances using Multi-Choice Learning objectives like winner-takes-all (WTA) or best-of-many.
Our work addresses two key challenges in trajectory prediction, learning outputs, and better predictions by imposing constraints using driving knowledge.
arXiv Detail & Related papers (2021-04-16T17:58:56Z) - Congestion-aware Multi-agent Trajectory Prediction for Collision
Avoidance [110.63037190641414]
We propose to learn congestion patterns explicitly and devise a novel "Sense--Learn--Reason--Predict" framework.
By decomposing the learning phases into two stages, a "student" can learn contextual cues from a "teacher" while generating collision-free trajectories.
In experiments, we demonstrate that the proposed model is able to generate collision-free trajectory predictions in a synthetic dataset.
arXiv Detail & Related papers (2021-03-26T02:42:33Z) - Multi-modal anticipation of stochastic trajectories in a dynamic
environment with Conditional Variational Autoencoders [0.12183405753834559]
Short-term motion of nearby vehicles is not strictly limited to a set of single trajectories.
We propose to account for the multi-modality of the problem with use of Conditional Conditional Autoencoder (C-VAE) conditioned on an agent's past motion as well as a scene encoded with Capsule Network (CapsNet)
In addition, we demonstrate advantages of employing the Minimum over N generated samples and tries to minimise the loss with respect to the closest sample, effectively leading to more diverse predictions.
arXiv Detail & Related papers (2021-03-05T19:38:26Z) - LookOut: Diverse Multi-Future Prediction and Planning for Self-Driving [139.33800431159446]
LookOut is an approach to jointly perceive the environment and predict a diverse set of futures from sensor data.
We show that our model demonstrates significantly more diverse and sample-efficient motion forecasting in a large-scale self-driving dataset.
arXiv Detail & Related papers (2021-01-16T23:19:22Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z) - Diverse and Admissible Trajectory Forecasting through Multimodal Context
Understanding [46.52703817997932]
Multi-agent trajectory forecasting in autonomous driving requires an agent to accurately anticipate the behaviors of the surrounding vehicles and pedestrians.
We propose a model that synthesizes multiple input signals from the multimodal world.
We show a significant performance improvement over previous state-of-the-art methods.
arXiv Detail & Related papers (2020-03-06T13:59:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.