PhysVarMix: Physics-Informed Variational Mixture Model for Multi-Modal Trajectory Prediction
- URL: http://arxiv.org/abs/2507.19701v1
- Date: Fri, 25 Jul 2025 22:45:42 GMT
- Title: PhysVarMix: Physics-Informed Variational Mixture Model for Multi-Modal Trajectory Prediction
- Authors: Haichuan Li, Tomi Westerlund,
- Abstract summary: We present a novel hybrid approach that integrates learning-based with physics-based constraints to address the multi-modality inherent in trajectory prediction.<n>Our framework incorporates physical realism through sector-specific boundary conditions and Model Predictive Control (MPC)-based smoothing.<n>Our approach offers a robust and scalable solution for navigating the uncertainties of real-world urban environments.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate prediction of future agent trajectories is a critical challenge for ensuring safe and efficient autonomous navigation, particularly in complex urban environments characterized by multiple plausible future scenarios. In this paper, we present a novel hybrid approach that integrates learning-based with physics-based constraints to address the multi-modality inherent in trajectory prediction. Our method employs a variational Bayesian mixture model to effectively capture the diverse range of potential future behaviors, moving beyond traditional unimodal assumptions. Unlike prior approaches that predominantly treat trajectory prediction as a data-driven regression task, our framework incorporates physical realism through sector-specific boundary conditions and Model Predictive Control (MPC)-based smoothing. These constraints ensure that predicted trajectories are not only data-consistent but also physically plausible, adhering to kinematic and dynamic principles. Furthermore, our method produces interpretable and diverse trajectory predictions, enabling enhanced downstream decision-making and planning in autonomous driving systems. We evaluate our approach on two benchmark datasets, demonstrating superior performance compared to existing methods. Comprehensive ablation studies validate the contributions of each component and highlight their synergistic impact on prediction accuracy and reliability. By balancing data-driven insights with physics-informed constraints, our approach offers a robust and scalable solution for navigating the uncertainties of real-world urban environments.
Related papers
- Beyond Patterns: Harnessing Causal Logic for Autonomous Driving Trajectory Prediction [10.21659221112514]
We introduce a novel trajectory prediction framework that leverages causal inference to enhance predictive robustness, generalization, and accuracy.<n>Our findings highlight the potential of causal reasoning to transform trajectory prediction, paving the way for robust autonomous driving systems.
arXiv Detail & Related papers (2025-05-11T05:56:07Z) - STGDPM:Vessel Trajectory Prediction with Spatio-Temporal Graph Diffusion Probabilistic Model [0.0]
Vessel trajectory prediction is a critical component for ensuring maritime traffic safety and avoiding collisions.<n>Due to the inherent uncertainty in vessel behavior, trajectory prediction systems must adopt a multimodal approach to accurately model potential future motion states.<n>We propose modeling interactions as dynamic graphs, replacing traditional aggregation-based techniques that rely on vessel states.
arXiv Detail & Related papers (2025-03-11T05:50:27Z) - Scene-Aware Explainable Multimodal Trajectory Prediction [15.58042746234974]
We introduce the Explainable Conditional Diffusion-based Multimodal Trajectory Prediction (DMTP) model.<n>Our model integrates a modified conditional diffusion approach to capture multimodal trajectory patterns and employs a revised Shapley Value model to assess the significance of global and scenario-specific features.<n> Experiments demonstrate that our explainable model excels in identifying critical inputs and significantly outperforms baseline models in accuracy.
arXiv Detail & Related papers (2024-10-22T08:17:33Z) - Motion Forecasting via Model-Based Risk Minimization [8.766024024417316]
We propose a novel sampling method applicable to trajectory prediction based on the predictions of multiple models.
We first show that conventional sampling based on predicted probabilities can degrade performance due to missing alignment between models.
By using state-of-the-art models as base learners, our approach constructs diverse and effective ensembles for optimal trajectory sampling.
arXiv Detail & Related papers (2024-09-16T09:03:28Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Certified Human Trajectory Prediction [66.1736456453465]
We propose a certification approach tailored for trajectory prediction that provides guaranteed robustness.<n>To mitigate the inherent performance drop through certification, we propose a diffusion-based trajectory denoiser and integrate it into our method.<n>We demonstrate the accuracy and robustness of the certified predictors and highlight their advantages over the non-certified ones.
arXiv Detail & Related papers (2024-03-20T17:41:35Z) - Diffusion-Based Environment-Aware Trajectory Prediction [3.1406146587437904]
The ability to predict the future trajectories of traffic participants is crucial for the safe and efficient operation of autonomous vehicles.
In this paper, a diffusion-based generative model for multi-agent trajectory prediction is proposed.
The model is capable of capturing the complex interactions between traffic participants and the environment, accurately learning the multimodal nature of the data.
arXiv Detail & Related papers (2024-03-18T10:35:15Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Congestion-aware Multi-agent Trajectory Prediction for Collision
Avoidance [110.63037190641414]
We propose to learn congestion patterns explicitly and devise a novel "Sense--Learn--Reason--Predict" framework.
By decomposing the learning phases into two stages, a "student" can learn contextual cues from a "teacher" while generating collision-free trajectories.
In experiments, we demonstrate that the proposed model is able to generate collision-free trajectory predictions in a synthetic dataset.
arXiv Detail & Related papers (2021-03-26T02:42:33Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
Probabilistic load forecasting (PLF) is a key component in the extended tool-chain required for efficient management of smart energy grids.
We propose a novel PLF approach, framed on Bayesian Mixture Density Networks.
To achieve reliable and computationally scalable estimators of the posterior distributions, both Mean Field variational inference and deep ensembles are integrated.
arXiv Detail & Related papers (2020-12-23T16:21:34Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.