Bridging the Gap Between Multi-Step and One-Shot Trajectory Prediction
via Self-Supervision
- URL: http://arxiv.org/abs/2306.03367v1
- Date: Tue, 6 Jun 2023 02:46:28 GMT
- Title: Bridging the Gap Between Multi-Step and One-Shot Trajectory Prediction
via Self-Supervision
- Authors: Faris Janjo\v{s}, Max Keller, Maxim Dolgov, J. Marius Z\"ollner
- Abstract summary: Accurate vehicle trajectory prediction is an unsolved problem in autonomous driving.
We propose a middle-ground where multiple trajectory segments are chained together.
Our proposed Multi-Branch Self-Supervised Predictor receives additional training on new predictions starting at intermediate future segments.
- Score: 2.365702128814616
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate vehicle trajectory prediction is an unsolved problem in autonomous
driving with various open research questions. State-of-the-art approaches
regress trajectories either in a one-shot or step-wise manner. Although
one-shot approaches are usually preferred for their simplicity, they relinquish
powerful self-supervision schemes that can be constructed by chaining multiple
time-steps. We address this issue by proposing a middle-ground where multiple
trajectory segments are chained together. Our proposed Multi-Branch
Self-Supervised Predictor receives additional training on new predictions
starting at intermediate future segments. In addition, the model 'imagines' the
latent context and 'predicts the past' while combining multi-modal trajectories
in a tree-like manner. We deliberately keep aspects such as interaction and
environment modeling simplistic and nevertheless achieve competitive results on
the INTERACTION dataset. Furthermore, we investigate the sparsely explored
uncertainty estimation of deterministic predictors. We find positive
correlations between the prediction error and two proposed metrics, which might
pave way for determining prediction confidence.
Related papers
- Enhancing Trajectory Prediction through Self-Supervised Waypoint Noise
Prediction [9.385936248154987]
Trajectory prediction is an important task that involves modeling the indeterminate nature of traffic actors to forecast future trajectories.
We propose a novel approach called SSWNP (Self-Supervised Waypoint Noise Prediction)
In our approach, we first create clean and noise-augmented views of past observed trajectories across the spatial domain of waypoints.
arXiv Detail & Related papers (2023-11-26T19:03:41Z) - Leveraging Future Relationship Reasoning for Vehicle Trajectory
Prediction [27.614778027454417]
We propose a novel approach that uses lane information to predict a future relationship among agents.
To obtain a coarse future motion of agents, our method first predicts the probability of lane-level waypoint occupancy of vehicles.
We then utilize the temporal probability of passing adjacent lanes for each agent pair, assuming that agents passing adjacent lanes will highly interact.
arXiv Detail & Related papers (2023-05-24T04:33:28Z) - Multimodal Trajectory Prediction: A Survey [13.519480642785561]
Trajectory prediction is an important task to support safe and intelligent behaviours in autonomous systems.
New task named multimodal trajectory prediction (MTP) aims to generate a diverse, acceptable and explainable distribution of future predictions for each agent.
arXiv Detail & Related papers (2023-02-21T06:11:08Z) - Improving Diversity of Multiple Trajectory Prediction based on
Map-adaptive Lane Loss [12.963269946571476]
This study proposes a novel loss function, textitLane Loss, that ensures map-adaptive diversity and accommodates geometric constraints.
Experiments performed on the Argoverse dataset show that the proposed method significantly improves the diversity of the predicted trajectories.
arXiv Detail & Related papers (2022-06-17T09:09:51Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
Under dynamic traffic scenarios, planning based on deterministic predictions is not trustworthy.
The authors propose to quantify uncertainty during forecasting using approximation which deterministic approaches fail to capture.
The effect of dropout weights and long-term prediction on future state uncertainty has been studied.
arXiv Detail & Related papers (2022-05-04T04:23:38Z) - M2I: From Factored Marginal Trajectory Prediction to Interactive
Prediction [26.49897317427192]
Existing models excel at predicting marginal trajectories for single agents, yet it remains an open question to jointly predict scene compliant trajectories over multiple agents.
In this work, we exploit the underlying relations between interacting agents and decouple the joint prediction problem into marginal prediction problems.
Our proposed approach M2I first classifies interacting agents as pairs of influencers and reactors, and then leverages a marginal prediction model and a conditional prediction model to predict trajectories for the influencers and reactors, respectively.
arXiv Detail & Related papers (2022-02-24T03:28:26Z) - You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory
Prediction [52.442129609979794]
Recent deep learning approaches for trajectory prediction show promising performance.
It remains unclear which features such black-box models actually learn to use for making predictions.
This paper proposes a procedure that quantifies the contributions of different cues to model performance.
arXiv Detail & Related papers (2021-10-11T14:24:15Z) - From Goals, Waypoints & Paths To Long Term Human Trajectory Forecasting [54.273455592965355]
Uncertainty in future trajectories stems from two sources: (a) sources known to the agent but unknown to the model, such as long term goals and (b)sources that are unknown to both the agent & the model, such as intent of other agents & irreducible randomness indecisions.
We model the epistemic un-certainty through multimodality in long term goals and the aleatoric uncertainty through multimodality in waypoints& paths.
To exemplify this dichotomy, we also propose a novel long term trajectory forecasting setting, with prediction horizons upto a minute, an order of magnitude longer than prior works.
arXiv Detail & Related papers (2020-12-02T21:01:29Z) - What-If Motion Prediction for Autonomous Driving [58.338520347197765]
Viable solutions must account for both the static geometric context, such as road lanes, and dynamic social interactions arising from multiple actors.
We propose a recurrent graph-based attentional approach with interpretable geometric (actor-lane) and social (actor-actor) relationships.
Our model can produce diverse predictions conditioned on hypothetical or "what-if" road lanes and multi-actor interactions.
arXiv Detail & Related papers (2020-08-24T17:49:30Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
We propose an extension of the Multiple Hypothesis Prediction (MHP) model to handle ambiguous predictions with sequential data.
We also introduce a novel metric for ambiguous problems, which is better suited to account for uncertainties.
arXiv Detail & Related papers (2020-03-10T09:15:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.