論文の概要: Toward a Theory of Causation for Interpreting Neural Code Models
- arxiv url: http://arxiv.org/abs/2302.03788v5
- Date: Thu, 28 Mar 2024 01:36:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 11:07:04.175541
- Title: Toward a Theory of Causation for Interpreting Neural Code Models
- Title(参考訳): ニューラルコードモデル解釈のための因果論に向けて
- Authors: David N. Palacio, Alejandro Velasco, Nathan Cooper, Alvaro Rodriguez, Kevin Moran, Denys Poshyvanyk,
- Abstract要約: 本稿では,ニューラルコードモデル(NCM)に特化したポストホック解釈法である$do_code$を紹介する。
$do_code$は、言語指向の説明を可能にする因果推論に基づいている。
その結果,NCMはコード構文の変化に敏感であることが判明した。
- 参考スコア(独自算出の注目度): 49.906221295459275
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Neural Language Models of Code, or Neural Code Models (NCMs), are rapidly progressing from research prototypes to commercial developer tools. As such, understanding the capabilities and limitations of such models is becoming critical. However, the abilities of these models are typically measured using automated metrics that often only reveal a portion of their real-world performance. While, in general, the performance of NCMs appears promising, currently much is unknown about how such models arrive at decisions. To this end, this paper introduces $do_{code}$, a post hoc interpretability method specific to NCMs that is capable of explaining model predictions. $do_{code}$ is based upon causal inference to enable programming language-oriented explanations. While the theoretical underpinnings of $do_{code}$ are extensible to exploring different model properties, we provide a concrete instantiation that aims to mitigate the impact of spurious correlations by grounding explanations of model behavior in properties of programming languages. To demonstrate the practical benefit of $do_{code}$, we illustrate the insights that our framework can provide by performing a case study on two popular deep learning architectures and ten NCMs. The results of this case study illustrate that our studied NCMs are sensitive to changes in code syntax. All our NCMs, except for the BERT-like model, statistically learn to predict tokens related to blocks of code (\eg brackets, parenthesis, semicolon) with less confounding bias as compared to other programming language constructs. These insights demonstrate the potential of $do_{code}$ as a useful method to detect and facilitate the elimination of confounding bias in NCMs.
- Abstract(参考訳): コードのニューラル言語モデル(Neural Language Models of Code、NCM)は、研究プロトタイプから商用開発ツールまで、急速に進歩している。
そのため、そのようなモデルの能力と限界を理解することが重要になっている。
しかしながら、これらのモデルの能力は通常、実際のパフォーマンスの一部だけを明らかにする自動メトリクスを使用して測定される。
一般的には、NCMのパフォーマンスは有望であるように思われるが、現在、そのようなモデルがどのように決定を下すかは不明だ。
そこで本研究では,モデル予測を記述可能な NCM 固有のポストホック解釈法である $do_{code}$ を紹介する。
$do_{code}$は、言語指向の説明を可能にする因果推論に基づいている。
do_{code}$の理論的基盤は、異なるモデル特性を探索するために拡張可能であるが、プログラミング言語の性質におけるモデル挙動の説明を基礎として、突発的相関の影響を軽減することを目的とした具体的なインスタンス化を提供する。
do_{code}$の実用的メリットを実証するために,2つの人気のあるディープラーニングアーキテクチャと10のNCMに関するケーススタディを実行することで,我々のフレームワークが提供できる洞察について説明する。
このケーススタディの結果から,NCMはコード構文の変化に敏感であることが示唆された。
BERTライクなモデルを除いて、我々のNCMは、他のプログラミング言語の構造と比べて、曖昧なバイアスが少なく、コードのブロック(グレッグ括弧、括弧、セミコロン)に関連するトークンを統計的に予測することを学びます。
これらの知見は、NCMにおける共起バイアスの検出と緩和に有用な方法として$do_{code}$の可能性を示している。
関連論文リスト
- EmbedLLM: Learning Compact Representations of Large Language Models [28.49433308281983]
大規模言語モデルのコンパクトなベクトル表現を学習するためのフレームワークである EmbedLLM を提案する。
このような埋め込みを学習するためのエンコーダ-デコーダアプローチと,その有効性を評価するための体系的なフレームワークを導入する。
EmbedLLMはモデルルーティングにおいて,精度とレイテンシの両方において,従来の手法よりも優れていた。
論文 参考訳(メタデータ) (2024-10-03T05:43:24Z) - Promises and Pitfalls of Generative Masked Language Modeling: Theoretical Framework and Practical Guidelines [74.42485647685272]
GMLM(Generative Masked Language Models)に焦点を当てる。
我々は,マルコフ連鎖の入力として使用されるマスキングにより,データ分布の条件付き確率に適合するモデルを訓練し,モデルからサンプルを抽出する。
我々は,T5モデルを並列デコーディングに適応させ,最小品質の犠牲を伴って機械翻訳における2~3倍の高速化を実現した。
論文 参考訳(メタデータ) (2024-07-22T18:00:00Z) - Perplexed: Understanding When Large Language Models are Confused [3.4208414448496027]
本稿では,言語モデルが複雑になる場所を探索するライブラリであるperplexedを紹介する。
Codetokenizerと呼ばれるコードモデルの解析を支援するために構築した追加ツールを使用して、コード生成のためのLLM(Large Language Models)に焦点を当てたケーススタディを実施しました。
我々の研究したコードLLMは、コードが構文的に正しくないコーディング構造において、最悪のパフォーマンスを示しました。
論文 参考訳(メタデータ) (2024-04-09T22:03:39Z) - Evaluating and Explaining Large Language Models for Code Using Syntactic
Structures [74.93762031957883]
本稿では,コード用大規模言語モデルに特有の説明可能性手法であるASTxplainerを紹介する。
その中核にあるASTxplainerは、トークン予測をASTノードに整合させる自動メソッドを提供する。
私たちは、最も人気のあるGitHubプロジェクトのキュレートデータセットを使用して、コード用の12の人気のあるLLMに対して、実証的な評価を行います。
論文 参考訳(メタデータ) (2023-08-07T18:50:57Z) - Language models are weak learners [71.33837923104808]
本研究では,プロンプトベースの大規模言語モデルは弱い学習者として効果的に動作可能であることを示す。
これらのモデルをブースティングアプローチに組み込むことで、モデル内の知識を活用して、従来のツリーベースのブースティングよりも優れています。
結果は、プロンプトベースのLLMが、少数の学習者だけでなく、より大きな機械学習パイプラインのコンポーネントとして機能する可能性を示している。
論文 参考訳(メタデータ) (2023-06-25T02:39:19Z) - Great Truths are Always Simple: A Rather Simple Knowledge Encoder for
Enhancing the Commonsense Reasoning Capacity of Pre-Trained Models [89.98762327725112]
自然言語における常識推論は、人工知能システムの望ましい能力である。
複雑なコモンセンス推論タスクを解決するための典型的な解決策は、知識対応グラフニューラルネットワーク(GNN)エンコーダで事前訓練された言語モデル(PTM)を強化することである。
有効性にもかかわらず、これらのアプローチは重いアーキテクチャ上に構築されており、外部知識リソースがPTMの推論能力をどのように改善するかを明確に説明できない。
論文 参考訳(メタデータ) (2022-05-04T01:27:36Z) - Counterfactual Explanations for Models of Code [11.678590247866534]
機械学習(ML)モデルは、多くのソフトウェアエンジニアリングタスクにおいて、ますます一般的な役割を担っている。
開発者が、なぜモデルが一定の結論に達したのか、モデルの予測にどのように対応すべきかを理解するのは難しいかもしれません。
本稿では,ソースコードのモデルに対する反実的説明について考察する。
論文 参考訳(メタデータ) (2021-11-10T14:44:19Z) - Explaining and Improving Model Behavior with k Nearest Neighbor
Representations [107.24850861390196]
モデルの予測に責任のあるトレーニング例を特定するために, k 近傍表現を提案する。
我々は,kNN表現が学習した素因関係を明らかにするのに有効であることを示す。
以上の結果から,kNN手法により,直交モデルが逆入力に対してより堅牢であることが示唆された。
論文 参考訳(メタデータ) (2020-10-18T16:55:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。