論文の概要: Perplexed: Understanding When Large Language Models are Confused
- arxiv url: http://arxiv.org/abs/2404.06634v1
- Date: Tue, 9 Apr 2024 22:03:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-11 16:08:54.298102
- Title: Perplexed: Understanding When Large Language Models are Confused
- Title(参考訳): Perplexed: 大きな言語モデルが混同されるときの理解
- Authors: Nathan Cooper, Torsten Scholak,
- Abstract要約: 本稿では,言語モデルが複雑になる場所を探索するライブラリであるperplexedを紹介する。
Codetokenizerと呼ばれるコードモデルの解析を支援するために構築した追加ツールを使用して、コード生成のためのLLM(Large Language Models)に焦点を当てたケーススタディを実施しました。
我々の研究したコードLLMは、コードが構文的に正しくないコーディング構造において、最悪のパフォーマンスを示しました。
- 参考スコア(独自算出の注目度): 3.4208414448496027
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have become dominant in the Natural Language Processing (NLP) field causing a huge surge in progress in a short amount of time. However, their limitations are still a mystery and have primarily been explored through tailored datasets to analyze a specific human-level skill such as negation, name resolution, etc. In this paper, we introduce perplexed, a library for exploring where a particular language model is perplexed. To show the flexibility and types of insights that can be gained by perplexed, we conducted a case study focused on LLMs for code generation using an additional tool we built to help with the analysis of code models called codetokenizer. Specifically, we explore success and failure cases at the token level of code LLMs under different scenarios pertaining to the type of coding structure the model is predicting, e.g., a variable name or operator, and how predicting of internal verses external method invocations impact performance. From this analysis, we found that our studied code LLMs had their worst performance on coding structures where the code was not syntactically correct. Additionally, we found the models to generally perform worse at predicting internal method invocations than external ones. We have open sourced both of these tools to allow the research community to better understand LLMs in general and LLMs for code generation.
- Abstract(参考訳): 大規模言語モデル(LLM)は、自然言語処理(NLP)分野において、短時間で大きな進歩をもたらした。
しかしながら、それらの制限は依然として謎であり、主に、否定や名前解決など、特定の人間レベルのスキルを分析するために、カスタマイズされたデータセットを通して調査されてきた。
本稿では,特定の言語モデルがどのようにパープリケートされているかを探索するライブラリであるperplexedを紹介する。
複雑化することによって得られる柔軟性と洞察のタイプを示すために、Codetokenizerと呼ばれるコードモデルの分析を支援するために構築した追加ツールを使用して、コード生成のためのLLMに焦点を当てたケーススタディを実施しました。
具体的には、モデルが予測しているコード構造の種類、例えば変数名や演算子、内部のメソッド呼び出しの予測がパフォーマンスに与える影響について、異なるシナリオ下でのLLMのトークンレベルでの成功事例と失敗事例について検討する。
この分析結果から,LLMは構文的に正しくないコーディング構造において,最悪の性能を示した。
さらに、内部メソッド呼び出しの予測では、外部呼び出しよりもモデルの方が一般的にパフォーマンスが悪くなることがわかりました。
我々はこれらのツールをオープンソース化し、研究コミュニティがLLMを一般的に理解できるようにし、LLMをコード生成に利用しました。
関連論文リスト
- Crystal: Illuminating LLM Abilities on Language and Code [58.5467653736537]
本稿では,自然言語と符号化機能の統合性を高めるための事前学習戦略を提案する。
結果のモデルであるCrystalは、両方のドメインで顕著な能力を示します。
論文 参考訳(メタデータ) (2024-11-06T10:28:46Z) - Source Code Summarization in the Era of Large Language Models [23.715005053430957]
大規模言語モデル(LLM)は、コード関連のタスクのパフォーマンスを大幅に向上させた。
本稿では,LLMにおけるコード要約の体系的および包括的研究を行う。
論文 参考訳(メタデータ) (2024-07-09T05:48:42Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
大規模言語モデル(LLM)は、幅広いタスクにまたがる顕著な機能を示している。
自然言語で説明できる能力により、LLMは人間に与えられるパターンのスケールと複雑さを拡大することができる。
これらの新しい機能は、幻覚的な説明や膨大な計算コストなど、新しい課題を提起する。
論文 参考訳(メタデータ) (2024-01-30T17:38:54Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - Evaluating In-Context Learning of Libraries for Code Generation [35.57902679044737]
大規模言語モデル(LLM)は高いレベルのコード生成と理解能力を示す。
近年の研究では、大規模プロプライエタリなLLMがデモから新しいライブラリの使用法を学習できることが示されている。
論文 参考訳(メタデータ) (2023-11-16T07:37:25Z) - Exploring Large Language Models for Code Explanation [3.2570216147409514]
大規模言語モデル(LLM)は自然言語処理において顕著な進歩を遂げている。
本研究では,様々なLLMを用いて,コードスニペットの自然言語要約を生成するタスクについて検討する。
論文 参考訳(メタデータ) (2023-10-25T14:38:40Z) - L2CEval: Evaluating Language-to-Code Generation Capabilities of Large
Language Models [102.00201523306986]
大規模言語モデル(LLM)の言語間コード生成能力を体系的に評価するL2CEvalを提案する。
モデルのサイズ、事前学習データ、命令チューニング、異なるプロンプトメソッドなど、それらのパフォーマンスに影響を与える可能性のある要因を分析する。
モデル性能の評価に加えて、モデルに対する信頼性校正を計測し、出力プログラムの人間による評価を行う。
論文 参考訳(メタデータ) (2023-09-29T17:57:00Z) - The potential of LLMs for coding with low-resource and domain-specific
programming languages [0.0]
本研究は,オープンソースソフトウェアGreetlのハンスル(Hansl)という,econometricスクリプティング言語に焦点を当てたものである。
この結果から, LLMはグレタブルコードの記述, 理解, 改善, 文書化に有用なツールであることが示唆された。
論文 参考訳(メタデータ) (2023-07-24T17:17:13Z) - Large Language Models are Few-Shot Summarizers: Multi-Intent Comment
Generation via In-Context Learning [34.006227676170504]
本研究では,大規模言語モデル(LLM)を用いて,開発者の多様な意図を満たすコメントを生成することの実現可能性について検討する。
2つの大規模なデータセットの実験は、私たちの洞察の理論的根拠を示しています。
論文 参考訳(メタデータ) (2023-04-22T12:26:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。