CRAFT: Criticality-Aware Fault-Tolerance Enhancement Techniques for
Emerging Memories-Based Deep Neural Networks
- URL: http://arxiv.org/abs/2302.03862v1
- Date: Wed, 8 Feb 2023 03:39:11 GMT
- Title: CRAFT: Criticality-Aware Fault-Tolerance Enhancement Techniques for
Emerging Memories-Based Deep Neural Networks
- Authors: Thai-Hoang Nguyen, Muhammad Imran, Jaehyuk Choi and Joon-Sung Yang
- Abstract summary: Deep Neural Networks (DNNs) have emerged as the most effective programming paradigm for computer vision and natural language processing applications.
This paper proposes CRAFT, i.e., Criticality-Aware Fault-Tolerance Enhancement Techniques to enhance the reliability of NVM-based DNNs.
- Score: 7.566423455230909
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Neural Networks (DNNs) have emerged as the most effective programming
paradigm for computer vision and natural language processing applications. With
the rapid development of DNNs, efficient hardware architectures for deploying
DNN-based applications on edge devices have been extensively studied. Emerging
Non-Volatile Memories (NVMs), with their better scalability, non-volatility and
good read performance, are found to be promising candidates for deploying DNNs.
However, despite the promise, emerging NVMs often suffer from reliability
issues such as stuck-at faults, which decrease the chip yield/memory lifetime
and severely impact the accuracy of DNNs. A stuck-at cell can be read but not
reprogrammed, thus, stuck-at faults in NVMs may or may not result in errors
depending on the data to be stored. By reducing the number of errors caused by
stuck-at faults, the reliability of a DNN-based system can be enhanced. This
paper proposes CRAFT, i.e., Criticality-Aware Fault-Tolerance Enhancement
Techniques to enhance the reliability of NVM-based DNNs in the presence of
stuck-at faults. A data block remapping technique is used to reduce the impact
of stuck-at faults on DNNs accuracy. Additionally, by performing bit-level
criticality analysis on various DNNs, the critical-bit positions in network
parameters that can significantly impact the accuracy are identified. Based on
this analysis, we propose an encoding method which effectively swaps the
critical bit positions with that of non-critical bits when more errors (due to
stuck-at faults) are present in the critical bits.
Related papers
- Harnessing Neuron Stability to Improve DNN Verification [42.65507402735545]
We present VeriStable, a novel extension of recently proposed DPLL-based constraint DNN verification approach.
We evaluate the effectiveness of VeriStable across a range of challenging benchmarks including fully-connected feed networks (FNNs), convolutional neural networks (CNNs) and residual networks (ResNets)
Preliminary results show that VeriStable is competitive and outperforms state-of-the-art verification tools, including $alpha$-$beta$-CROWN and MN-BaB, the first and second performers of the VNN-COMP, respectively.
arXiv Detail & Related papers (2024-01-19T23:48:04Z) - Special Session: Approximation and Fault Resiliency of DNN Accelerators [0.9126382223122612]
This paper explores the approximation and fault resiliency of Deep Neural Network accelerators.
We propose to use approximate (AxC) arithmetic circuits to emulate errors in hardware without performing fault injection on the DNN.
We also propose a fine-grain analysis of fault resiliency by examining fault propagation and masking in networks.
arXiv Detail & Related papers (2023-05-31T19:27:45Z) - The #DNN-Verification Problem: Counting Unsafe Inputs for Deep Neural
Networks [94.63547069706459]
#DNN-Verification problem involves counting the number of input configurations of a DNN that result in a violation of a safety property.
We propose a novel approach that returns the exact count of violations.
We present experimental results on a set of safety-critical benchmarks.
arXiv Detail & Related papers (2023-01-17T18:32:01Z) - Thales: Formulating and Estimating Architectural Vulnerability Factors
for DNN Accelerators [6.8082132475259405]
This paper focuses on quantifying the accuracy given that a transient error has occurred, which tells us how well a network behaves when a transient error occurs.
We show that existing Resiliency Accuracy (RA) formulation is fundamentally inaccurate, because it incorrectly assumes that software variables have equal faulty probability under hardware transient faults.
We present an algorithm that captures the faulty probabilities of DNN variables under transient faults and, thus, provides correct RA estimations validated by hardware.
arXiv Detail & Related papers (2022-12-05T23:16:20Z) - Recurrent Bilinear Optimization for Binary Neural Networks [58.972212365275595]
BNNs neglect the intrinsic bilinear relationship of real-valued weights and scale factors.
Our work is the first attempt to optimize BNNs from the bilinear perspective.
We obtain robust RBONNs, which show impressive performance over state-of-the-art BNNs on various models and datasets.
arXiv Detail & Related papers (2022-09-04T06:45:33Z) - Fault-Aware Design and Training to Enhance DNNs Reliability with
Zero-Overhead [67.87678914831477]
Deep Neural Networks (DNNs) enable a wide series of technological advancements.
Recent findings indicate that transient hardware faults may corrupt the models prediction dramatically.
In this work, we propose to tackle the reliability issue both at training and model design time.
arXiv Detail & Related papers (2022-05-28T13:09:30Z) - Online Limited Memory Neural-Linear Bandits with Likelihood Matching [53.18698496031658]
We study neural-linear bandits for solving problems where both exploration and representation learning play an important role.
We propose a likelihood matching algorithm that is resilient to catastrophic forgetting and is completely online.
arXiv Detail & Related papers (2021-02-07T14:19:07Z) - FAT: Training Neural Networks for Reliable Inference Under Hardware
Faults [3.191587417198382]
We present a novel methodology called fault-aware training (FAT), which includes error modeling during neural network (NN) training, to make QNNs resilient to specific fault models on the device.
FAT has been validated for numerous classification tasks including CIFAR10, GTSRB, SVHN and ImageNet.
arXiv Detail & Related papers (2020-11-11T16:09:39Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
Deep Neural Networks (DNNs) achieve state-of-the-art results in many different problem settings.
DNNs are often treated as black box systems, which complicates their evaluation and validation.
One promising field, inspired by the success of convolutional neural networks (CNNs) in computer vision tasks, is to incorporate knowledge about symmetric geometrical transformations.
arXiv Detail & Related papers (2020-06-30T14:56:05Z) - CodNN -- Robust Neural Networks From Coded Classification [27.38642191854458]
Deep Neural Networks (DNNs) are a revolutionary force in the ongoing information revolution.
DNNs are highly sensitive to noise, whether adversarial or random.
This poses a fundamental challenge for hardware implementations of DNNs, and for their deployment in critical applications such as autonomous driving.
By our approach, either the data or internal layers of the DNN are coded with error correcting codes, and successful computation under noise is guaranteed.
arXiv Detail & Related papers (2020-04-22T17:07:15Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
Quantization neural networks (QNNs) are very attractive to the industry because their extremely cheap calculation and storage overhead, but their performance is still worse than that of networks with full-precision parameters.
Most of existing methods aim to enhance performance of QNNs especially binary neural networks by exploiting more effective training techniques.
We address this problem by projecting features in original full-precision networks to high-dimensional quantization features.
arXiv Detail & Related papers (2020-02-03T04:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.