Neural Artistic Style Transfer with Conditional Adversaria
- URL: http://arxiv.org/abs/2302.03875v1
- Date: Wed, 8 Feb 2023 04:34:20 GMT
- Title: Neural Artistic Style Transfer with Conditional Adversaria
- Authors: P. N. Deelaka
- Abstract summary: A neural artistic style transformation model can modify the appearance of a simple image by adding the style of a famous image.
In this paper, we present two methods that step toward the style image independent neural style transfer model.
Our novel contribution is a unidirectional-GAN model that ensures the Cyclic consistency by the model architecture.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A neural artistic style transformation (NST) model can modify the appearance
of a simple image by adding the style of a famous image. Even though the
transformed images do not look precisely like artworks by the same artist of
the respective style images, the generated images are appealing. Generally, a
trained NST model specialises in a style, and a single image represents that
style. However, generating an image under a new style is a tedious process,
which includes full model training. In this paper, we present two methods that
step toward the style image independent neural style transfer model. In other
words, the trained model could generate semantically accurate generated image
under any content, style image input pair. Our novel contribution is a
unidirectional-GAN model that ensures the Cyclic consistency by the model
architecture.Furthermore, this leads to much smaller model size and an
efficient training and validation phase.
Related papers
- Customizing Text-to-Image Models with a Single Image Pair [47.49970731632113]
Art reinterpretation is the practice of creating a variation of a reference work, making a paired artwork that exhibits a distinct artistic style.
We propose Pair Customization, a new customization method that learns stylistic difference from a single image pair and then applies the acquired style to the generation process.
arXiv Detail & Related papers (2024-05-02T17:59:52Z) - MuseumMaker: Continual Style Customization without Catastrophic Forgetting [50.12727620780213]
We propose MuseumMaker, a method that enables the synthesis of images by following a set of customized styles in a never-end manner.
When facing with a new customization style, we develop a style distillation loss module to extract and learn the styles of the training data for new image generation.
It can minimize the learning biases caused by content of new training images, and address the catastrophic overfitting issue induced by few-shot images.
arXiv Detail & Related papers (2024-04-25T13:51:38Z) - ArtBank: Artistic Style Transfer with Pre-trained Diffusion Model and
Implicit Style Prompt Bank [9.99530386586636]
Artistic style transfer aims to repaint the content image with the learned artistic style.
Existing artistic style transfer methods can be divided into two categories: small model-based approaches and pre-trained large-scale model-based approaches.
We propose ArtBank, a novel artistic style transfer framework, to generate highly realistic stylized images.
arXiv Detail & Related papers (2023-12-11T05:53:40Z) - Generative AI Model for Artistic Style Transfer Using Convolutional
Neural Networks [0.0]
Artistic style transfer involves fusing the content of one image with the artistic style of another to create unique visual compositions.
This paper presents a comprehensive overview of a novel technique for style transfer using Convolutional Neural Networks (CNNs)
arXiv Detail & Related papers (2023-10-27T16:21:17Z) - DIFF-NST: Diffusion Interleaving For deFormable Neural Style Transfer [27.39248034592382]
We propose using a new class of models to perform style transfer while enabling deformable style transfer.
We show how leveraging the priors of these models can expose new artistic controls at inference time.
arXiv Detail & Related papers (2023-07-09T12:13:43Z) - NeAT: Neural Artistic Tracing for Beautiful Style Transfer [29.38791171225834]
Style transfer is the task of reproducing semantic contents of a source image in the artistic style of a second target image.
We present NeAT, a new state-of-the art feed-forward style transfer method.
We use BBST-4M to improve and measure the generalization of NeAT across a huge variety of styles.
arXiv Detail & Related papers (2023-04-11T11:08:13Z) - A Unified Arbitrary Style Transfer Framework via Adaptive Contrastive
Learning [84.8813842101747]
Unified Contrastive Arbitrary Style Transfer (UCAST) is a novel style representation learning and transfer framework.
We present an adaptive contrastive learning scheme for style transfer by introducing an input-dependent temperature.
Our framework consists of three key components, i.e., a parallel contrastive learning scheme for style representation and style transfer, a domain enhancement module for effective learning of style distribution, and a generative network for style transfer.
arXiv Detail & Related papers (2023-03-09T04:35:00Z) - Learning Diverse Tone Styles for Image Retouching [73.60013618215328]
We propose to learn diverse image retouching with normalizing flow-based architectures.
A joint-training pipeline is composed of a style encoder, a conditional RetouchNet, and the image tone style normalizing flow (TSFlow) module.
Our proposed method performs favorably against state-of-the-art methods and is effective in generating diverse results.
arXiv Detail & Related papers (2022-07-12T09:49:21Z) - Domain Enhanced Arbitrary Image Style Transfer via Contrastive Learning [84.8813842101747]
Contrastive Arbitrary Style Transfer (CAST) is a new style representation learning and style transfer method via contrastive learning.
Our framework consists of three key components, i.e., a multi-layer style projector for style code encoding, a domain enhancement module for effective learning of style distribution, and a generative network for image style transfer.
arXiv Detail & Related papers (2022-05-19T13:11:24Z) - Pastiche Master: Exemplar-Based High-Resolution Portrait Style Transfer [103.54337984566877]
Recent studies on StyleGAN show high performance on artistic portrait generation by transfer learning with limited data.
We introduce a novel DualStyleGAN with flexible control of dual styles of the original face domain and the extended artistic portrait domain.
Experiments demonstrate the superiority of DualStyleGAN over state-of-the-art methods in high-quality portrait style transfer and flexible style control.
arXiv Detail & Related papers (2022-03-24T17:57:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.