論文の概要: The Hardware Impact of Quantization and Pruning for Weights in Spiking
Neural Networks
- arxiv url: http://arxiv.org/abs/2302.04174v1
- Date: Wed, 8 Feb 2023 16:25:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-09 15:35:38.191765
- Title: The Hardware Impact of Quantization and Pruning for Weights in Spiking
Neural Networks
- Title(参考訳): スパイクニューラルネットワークにおける重みの量子化とプルーニングのハードウェア的影響
- Authors: Clemens JS Schaefer, Pooria Taheri, Mark Horeni, and Siddharth Joshi
- Abstract要約: パラメータの量子化とプルーニングは、モデルサイズを圧縮し、メモリフットプリントを削減し、低レイテンシ実行を容易にする。
本研究では,身近な身近なジェスチャー認識システムであるSNNに対して,孤立度,累積的に,そして同時にプルーニングと量子化の様々な組み合わせについて検討する。
本研究では,3次重みまで精度の低下に悩まされることなく,攻撃的パラメータ量子化に対処可能であることを示す。
- 参考スコア(独自算出の注目度): 0.368986335765876
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Energy efficient implementations and deployments of Spiking neural networks
(SNNs) have been of great interest due to the possibility of developing
artificial systems that can achieve the computational powers and energy
efficiency of the biological brain. Efficient implementations of SNNs on modern
digital hardware are also inspired by advances in machine learning and deep
neural networks (DNNs). Two techniques widely employed in the efficient
deployment of DNNs -- the quantization and pruning of parameters, can both
compress the model size, reduce memory footprints, and facilitate low-latency
execution. The interaction between quantization and pruning and how they might
impact model performance on SNN accelerators is currently unknown. We study
various combinations of pruning and quantization in isolation, cumulatively,
and simultaneously (jointly) to a state-of-the-art SNN targeting gesture
recognition for dynamic vision sensor cameras (DVS). We show that this
state-of-the-art model is amenable to aggressive parameter quantization, not
suffering from any loss in accuracy down to ternary weights. However, pruning
only maintains iso-accuracy up to 80% sparsity, which results in 45% more
energy than the best quantization on our architectural model. Applying both
pruning and quantization can result in an accuracy loss to offer a favourable
trade-off on the energy-accuracy Pareto-frontier for the given hardware
configuration.
- Abstract(参考訳): スパイキングニューラルネットワーク(SNN)のエネルギー効率の高い実装と展開は、生体脳の計算能力とエネルギー効率を達成する人工システムを開発する可能性から大きな関心を集めている。
現代のデジタルハードウェア上でのSNNの効率的な実装も、機械学習とディープニューラルネットワーク(DNN)の進歩にインスパイアされている。
DNNの効率的なデプロイに広く採用されている2つのテクニック -- パラメータの量子化とプルーニング — は、モデルサイズを圧縮し、メモリフットプリントを削減し、低レイテンシ実行を容易にする。
量子化とプルーニングの相互作用とSNNアクセラレーターにおけるモデルパフォーマンスへの影響は現時点では不明である。
動的視覚センサカメラ(dvs)のための最先端のsn目標ジェスチャ認識に対して,pruning と quantization の分離,累積的および同時的組み合わせについて検討した。
この最先端のモデルは攻撃的パラメータ量子化に適しており、三元重みによる精度の損失に苦しむことはない。
しかし、プルーニングは最大80%のスパース性しか維持せず、建築モデルの最良の量子化よりも45%のエネルギーを消費します。
プルーニングと量子化の両方を適用すると精度が低下し、与えられたハードウェア構成の正確なpareto-frontierに対する有利なトレードオフが得られる。
関連論文リスト
- Scalable Mechanistic Neural Networks [52.28945097811129]
長い時間的シーケンスを含む科学機械学習応用のための拡張ニューラルネットワークフレームワークを提案する。
元のメカニスティックニューラルネットワーク (MNN) を再構成することにより、計算時間と空間の複雑さを、それぞれ、列長に関して立方体と二次体から線形へと減少させる。
大規模な実験により、S-MNNは元のMNNと精度で一致し、計算資源を大幅に削減した。
論文 参考訳(メタデータ) (2024-10-08T14:27:28Z) - Sparsity-Aware Hardware-Software Co-Design of Spiking Neural Networks: An Overview [1.0499611180329804]
スパイキングニューラルネットワーク(SNN)は、生物学的ニューラルネットワークのスパースでイベント駆動的な性質にインスパイアされ、超低消費電力人工知能の可能性を秘めている。
スパースSNNのハードウェア・ソフトウェア共同設計について検討し,スパース表現,ハードウェアアーキテクチャ,トレーニング技術がハードウェア効率に与える影響について検討する。
本研究の目的は,スパースSNNの計算的優位性をフル活用した,組込みニューロモルフィックシステムへの道筋を解明することである。
論文 参考訳(メタデータ) (2024-08-26T17:22:11Z) - Q-SNNs: Quantized Spiking Neural Networks [12.719590949933105]
スパイキングニューラルネットワーク(SNN)はスパーススパイクを利用して情報を表現し、イベント駆動方式で処理する。
シナプス重みと膜電位の両方に量子化を適用する軽量でハードウェアフレンドリな量子化SNNを提案する。
本稿では,情報エントロピー理論にインスパイアされた新しいウェイトスパイクデュアルレギュレーション(WS-DR)法を提案する。
論文 参考訳(メタデータ) (2024-06-19T16:23:26Z) - Hardware-Aware DNN Compression via Diverse Pruning and Mixed-Precision
Quantization [1.0235078178220354]
本稿では, プルーニングと量子化を併用してハードウェアに配慮したディープニューラルネットワーク(DNN)の自動圧縮フレームワークを提案する。
われわれのフレームワークはデータセットの平均エネルギー消費量を39%減らし、平均精度損失を1.7%減らし、最先端のアプローチを著しく上回っている。
論文 参考訳(メタデータ) (2023-12-23T18:50:13Z) - EPIM: Efficient Processing-In-Memory Accelerators based on Epitome [78.79382890789607]
畳み込みのような機能を提供する軽量神経オペレータであるEpitomeを紹介する。
ソフトウェア側では,PIMアクセラレータ上でのエピトームのレイテンシとエネルギを評価する。
ハードウェア効率を向上させるため,PIM対応層設計手法を提案する。
論文 参考訳(メタデータ) (2023-11-12T17:56:39Z) - Low Precision Quantization-aware Training in Spiking Neural Networks
with Differentiable Quantization Function [0.5046831208137847]
この研究は、量子化されたニューラルネットワークの最近の進歩とスパイクニューラルネットワークのギャップを埋めることを目的としている。
これは、シグモイド関数の線形結合として表される量子化関数の性能に関する広範な研究を示す。
提案した量子化関数は、4つの人気のあるベンチマーク上での最先端のパフォーマンスを示す。
論文 参考訳(メタデータ) (2023-05-30T09:42:05Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - Low-Precision Training in Logarithmic Number System using Multiplicative
Weight Update [49.948082497688404]
大規模ディープニューラルネットワーク(DNN)のトレーニングは、現在かなりの量のエネルギーを必要としており、深刻な環境影響をもたらす。
エネルギーコストを削減するための有望なアプローチの1つは、DNNを低精度で表現することである。
対数数システム(LNS)と乗算重み更新訓練法(LNS-Madam)を併用した低精度トレーニングフレームワークを共同で設計する。
論文 参考訳(メタデータ) (2021-06-26T00:32:17Z) - Ps and Qs: Quantization-aware pruning for efficient low latency neural
network inference [56.24109486973292]
超低遅延アプリケーションのためのニューラルネットワークのトレーニング中の分級と量子化の相互作用を研究します。
量子化アウェアプルーニングは,タスクのプルーニングや量子化のみよりも計算効率のよいモデルであることが判明した。
論文 参考訳(メタデータ) (2021-02-22T19:00:05Z) - FSpiNN: An Optimization Framework for Memory- and Energy-Efficient
Spiking Neural Networks [14.916996986290902]
スパイキングニューラルネットワーク(SNN)は、スパイクタイピング依存の可塑性(STDP)ルールのために教師なし学習機能を提供する。
しかし、最先端のSNNは高い精度を達成するために大きなメモリフットプリントを必要とする。
トレーニングおよび推論処理のためのメモリ効率とエネルギー効率のよいSNNを得るための最適化フレームワークFSpiNNを提案する。
論文 参考訳(メタデータ) (2020-07-17T09:40:26Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
量子化ニューラルネットワーク(QNN)は、非常に安価な計算とストレージオーバーヘッドのため、業界にとって非常に魅力的なものだが、その性能は、完全な精度パラメータを持つネットワークよりも悪い。
既存の手法の多くは、より効果的なトレーニング技術を利用して、特にバイナリニューラルネットワークの性能を高めることを目的としている。
本稿では,従来の完全精度ネットワークで高次元量子化機能に特徴を投影することで,この問題に対処する。
論文 参考訳(メタデータ) (2020-02-03T04:11:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。