Engineering Arbitrary Hamiltonians in Phase Space
- URL: http://arxiv.org/abs/2302.04257v3
- Date: Sun, 19 Nov 2023 03:24:06 GMT
- Title: Engineering Arbitrary Hamiltonians in Phase Space
- Authors: Lingzhen Guo and Vittorio Peano
- Abstract summary: We introduce a general method to engineer arbitrary Hamiltonians in the Floquet phase space of a periodically driven oscillator.
We establish the relationship between an arbitrary target Floquet Hamiltonian in phase space and the periodic driving potential in real space.
Our protocol can be realised in a range of experimental platforms for nonclassical states generation and bosonic quantum computation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a general method to engineer arbitrary Hamiltonians in the
Floquet phase space of a periodically driven oscillator, based on the
non-commutative Fourier transformation (NcFT) technique. We establish the
relationship between an arbitrary target Floquet Hamiltonian in phase space and
the periodic driving potential in real space. We obtain analytical expressions
for the driving potentials in real space that can generate novel Hamiltonians
in phase space, e.g., rotational lattices and sharp-boundary well. Our protocol
can be realised in a range of experimental platforms for nonclassical states
generation and bosonic quantum computation.
Related papers
- Perturbative Framework for Engineering Arbitrary Floquet Hamiltonian [0.0]
We develop a systematic perturbative framework to engineer an arbitrary target Hamiltonian in the Floquet phase space.
The high-order errors in the engineered Floquet Hamiltonian are mitigated by adding high-order driving potentials perturbatively.
arXiv Detail & Related papers (2024-10-14T12:58:55Z) - Investigation of Floquet engineered non-Abelian geometric phase for
holonomic quantum computing [0.0]
We present an experiment in ultracold $87$Rb atoms where atomic spin states are dressed by modulated RF fields to induce periodic driving of a family of Hamiltonians linked through a tuneable parameter space.
The adiabatic motion through this parameter space leads to the holonomic evolution of the degenerate spin states in $SU(2)$, characterized by a non-Abelian connection.
Results indicate that while the Floquet engineering technique removes the need for explicit degeneracies, it inherits many of the same limitations present in degenerate systems.
arXiv Detail & Related papers (2023-07-24T17:34:22Z) - Floquet insulators and lattice fermions [0.0]
Floquet insulators are periodically driven quantum systems that can host novel topological phases as a function of the drive parameters.
We make this suggestion concrete by mapping the spectrum of a noninteracting (1+1)D Floquet insulator for certain drive parameters onto that of a discrete-time lattice fermion theory with a time-independent Hamiltonian.
arXiv Detail & Related papers (2023-06-28T18:00:05Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Fermion production at the boundary of an expanding universe: a cold-atom
gravitational analogue [68.8204255655161]
We study the phenomenon of cosmological particle production of Dirac fermions in a Friedman-Robertson-Walker spacetime.
We present a scheme for the quantum simulation of this gravitational analogue by means of ultra-cold atoms in Raman optical lattices.
arXiv Detail & Related papers (2022-12-02T18:28:23Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Bloch-like super-oscillations and unidirectional motion of phase driven
quantum walkers [0.0]
We study the dynamics of a quantum walker simultaneously subjected to time-independent and -dependent phases.
We show that the average drift velocity can be well described within a continuous-time analogous model.
arXiv Detail & Related papers (2020-08-15T12:19:05Z) - Exploring 2D synthetic quantum Hall physics with a quasi-periodically
driven qubit [58.720142291102135]
Quasi-periodically driven quantum systems are predicted to exhibit quantized topological properties.
We experimentally study a synthetic quantum Hall effect with a two-tone drive.
arXiv Detail & Related papers (2020-04-07T15:00:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.