Floquet insulators and lattice fermions
- URL: http://arxiv.org/abs/2306.16463v2
- Date: Mon, 10 Jul 2023 19:23:32 GMT
- Title: Floquet insulators and lattice fermions
- Authors: Thomas Iadecola, Srimoyee Sen, Lars Sivertsen
- Abstract summary: Floquet insulators are periodically driven quantum systems that can host novel topological phases as a function of the drive parameters.
We make this suggestion concrete by mapping the spectrum of a noninteracting (1+1)D Floquet insulator for certain drive parameters onto that of a discrete-time lattice fermion theory with a time-independent Hamiltonian.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Floquet insulators are periodically driven quantum systems that can host
novel topological phases as a function of the drive parameters. These new
phases exhibit features reminiscent of fermion doubling in discrete-time
lattice fermion theories. We make this suggestion concrete by mapping the
spectrum of a noninteracting (1+1)D Floquet insulator for certain drive
parameters onto that of a discrete-time lattice fermion theory with a
time-independent Hamiltonian. The resulting Hamiltonian is distinct from the
Floquet Hamiltonian that generates stroboscopic dynamics. It can take the form
of a discrete-time Su-Schrieffer-Heeger model with half the number of spatial
sites of the original model, or of a (1+1)D Wilson-Dirac theory with one
quarter of the spatial sites.
Related papers
- $2+1$ dimensional Floquet systems and lattice fermions: Exact bulk spectral equivalence [0.0]
A connection has been proposed between periodically driven systems known as Floquet insulators in continuous time and static fermion theories in discrete time.
Here we investigate the potential of static discrete-time theories to capture Floquet physics in higher dimensions.
arXiv Detail & Related papers (2024-10-23T19:09:01Z) - A Floquet analysis perspective of driven light-matter interaction models [0.0]
We analyze the harmonically driven Jaynes-Cummings and Lipkin-Meshkov-Glick models using both numerical integration of time-dependent Hamiltonians and Floquet theory.
For a separation of time-scales between the drive and intrinsic Rabi oscillations in the former model, the driving results in an effective periodic reversal of time.
Despite the chaotic nature of the driven Lipkin-Meshkov-Glick model, moderate system sizes can display qualitatively different behaviors under varying system parameters.
arXiv Detail & Related papers (2024-03-26T16:53:32Z) - Simultaneous symmetry breaking in spontaneous Floquet states: Floquet-Nambu-Goldstone modes, Floquet thermodynamics, and the time operator [49.1574468325115]
We study simultaneous symmetry-breaking in a spontaneous Floquet state, focusing on the specific case of an atomic condensate.
We first describe the quantization of the Nambu-Goldstone (NG) modes for a stationary state simultaneously breaking several symmetries of the Hamiltonian.
We extend the formalism to Floquet states simultaneously breaking several symmetries, where Goldstone theorem translates into the emergence of Floquet-Nambu-Goldstone modes with zero quasi-energy.
arXiv Detail & Related papers (2024-02-16T16:06:08Z) - Floquet insulators and lattice fermions beyond naive time discretization [0.0]
Floquet insulators can host topologically protected bound states that exhibit response at half the frequency of the drive.
Such states can also appear in undriven lattice field theories when time is discretized as a result of fermion doubling.
We show that spectral features characteristic of beyond-equilibrium physics in Floquet systems can be replicated in static systems with appropriate time discretization.
arXiv Detail & Related papers (2023-11-09T19:00:04Z) - Stability of time-periodic $\mathcal{PT}$ and
anti-$\mathcal{PT}$-symmetric Hamiltonians with different periodicities [0.0]
Hermitian Hamiltonians with time-periodic coefficients can be analyzed via Floquet theory.
Time-periodicity offers avenues to engineer the landscape of Floquet quasi-energies across the complex plane.
arXiv Detail & Related papers (2023-01-16T04:30:06Z) - Fermion production at the boundary of an expanding universe: a cold-atom
gravitational analogue [68.8204255655161]
We study the phenomenon of cosmological particle production of Dirac fermions in a Friedman-Robertson-Walker spacetime.
We present a scheme for the quantum simulation of this gravitational analogue by means of ultra-cold atoms in Raman optical lattices.
arXiv Detail & Related papers (2022-12-02T18:28:23Z) - In-Gap Band Formation in a Periodically Driven Charge Density Wave
Insulator [68.8204255655161]
Periodically driven quantum many-body systems host unconventional behavior not realized at equilibrium.
We investigate such a setup for strongly interacting spinless fermions on a chain, which at zero temperature and strong interactions form a charge density wave insulator.
arXiv Detail & Related papers (2022-05-19T13:28:47Z) - Spectral form factor in a minimal bosonic model of many-body quantum
chaos [1.3793594968500609]
We study spectral form factor in periodically-kicked bosonic chains.
We numerically find a nontrivial systematic system-size dependence of the Thouless time.
arXiv Detail & Related papers (2022-03-10T15:56:24Z) - Models of zero-range interaction for the bosonic trimer at unitarity [91.3755431537592]
We present the construction of quantum Hamiltonians for a three-body system consisting of identical bosons mutually coupled by a two-body interaction of zero range.
For a large part of the presentation, infinite scattering length will be considered.
arXiv Detail & Related papers (2020-06-03T17:54:43Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z) - Bulk detection of time-dependent topological transitions in quenched
chiral models [48.7576911714538]
We show that the winding number of the Hamiltonian eigenstates can be read-out by measuring the mean chiral displacement of a single-particle wavefunction.
This implies that the mean chiral displacement can detect the winding number even when the underlying Hamiltonian is quenched between different topological phases.
arXiv Detail & Related papers (2020-01-16T17:44:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.