Deep learning of many-body observables and quantum information scrambling
- URL: http://arxiv.org/abs/2302.04621v2
- Date: Mon, 15 Jul 2024 20:33:00 GMT
- Title: Deep learning of many-body observables and quantum information scrambling
- Authors: Naeimeh Mohseni, Junheng Shi, Tim Byrnes, Michael J. Hartmann,
- Abstract summary: We explore how the capacity of data-driven deep neural networks in learning the dynamics of physical observables is correlated with the scrambling of quantum information.
We train a neural network to find a mapping from the parameters of a model to the evolution of observables in random quantum circuits.
We show that a particular type of recurrent neural network is extremely powerful in generalizing its predictions within the system size and time window that it has been trained on for both, localized and scrambled regimes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning has shown significant breakthroughs in quantum science, where in particular deep neural networks exhibited remarkable power in modeling quantum many-body systems. Here, we explore how the capacity of data-driven deep neural networks in learning the dynamics of physical observables is correlated with the scrambling of quantum information. We train a neural network to find a mapping from the parameters of a model to the evolution of observables in random quantum circuits for various regimes of quantum scrambling and test its \textit{generalization} and \textit{extrapolation} capabilities in applying it to unseen circuits. Our results show that a particular type of recurrent neural network is extremely powerful in generalizing its predictions within the system size and time window that it has been trained on for both, localized and scrambled regimes. These include regimes where classical learning approaches are known to fail in sampling from a representation of the full wave function. Moreover, the considered neural network succeeds in \textit{extrapolating} its predictions beyond the time window and system size that it has been trained on for models that show localization, but not in scrambled regimes.
Related papers
- Transfer learning in predicting quantum many-body dynamics: from physical observables to entanglement entropy [0.6581635937019595]
We show the capacity of a neural network that was trained on a subset of physical observables of a many-body system to partially acquire an implicit representation of the wave function.
In particular, we focus on how the pre-trained neural network can enhance the learning of entanglement entropy.
arXiv Detail & Related papers (2024-05-25T14:32:21Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
We propose a data-centric learning paradigm combining the strength of neural-network protocols and classical shadows.
Capitalizing on the generalization power of neural networks, this paradigm can be trained offline and excel at predicting previously unseen systems.
We present the instantiation of our paradigm in quantum state tomography and direct fidelity estimation tasks and conduct numerical analysis up to 60 qubits.
arXiv Detail & Related papers (2023-08-22T09:11:53Z) - On the Interpretability of Quantum Neural Networks [0.0]
Interpretability of artificial intelligence (AI) methods, particularly deep neural networks, is of great interest.
Here, we explore the interpretability of quantum neural networks using local model-agnostic interpretability measures commonly utilized for classical neural networks.
A feature of our explanations is the delineation of the region in which data samples have been given a random label, likely subjects of inherently random quantum measurements.
arXiv Detail & Related papers (2023-08-22T00:43:14Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - An Invitation to Distributed Quantum Neural Networks [0.0]
We review the current state of the art in distributed quantum neural networks.
We find that the distribution of quantum datasets shares more similarities with its classical counterpart than does the distribution of quantum models.
arXiv Detail & Related papers (2022-11-14T00:27:01Z) - Flexible learning of quantum states with generative query neural
networks [4.540894342435848]
We show that learning across multiple quantum states can be achieved by a generative query neural network.
Our network can be trained offline with classically simulated data, and later be used to characterize unknown quantum states from real experimental data.
arXiv Detail & Related papers (2022-02-14T15:48:27Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
We show that conditions amenable to classical trainability via gradient descent coincide with those necessary for efficiently solving quantum linear systems.
We numerically demonstrate that the MNIST image dataset satisfies such conditions.
We provide empirical evidence for $O(log n)$ training of a convolutional neural network with pooling.
arXiv Detail & Related papers (2021-07-19T23:41:03Z) - Quantum Self-Supervised Learning [22.953284192004034]
We propose a hybrid quantum-classical neural network architecture for contrastive self-supervised learning.
We apply our best quantum model to classify unseen images on the ibmq_paris quantum computer.
arXiv Detail & Related papers (2021-03-26T18:00:00Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.