On the Interpretability of Quantum Neural Networks
- URL: http://arxiv.org/abs/2308.11098v2
- Date: Fri, 19 Apr 2024 00:37:42 GMT
- Title: On the Interpretability of Quantum Neural Networks
- Authors: Lirandë Pira, Chris Ferrie,
- Abstract summary: Interpretability of artificial intelligence (AI) methods, particularly deep neural networks, is of great interest.
Here, we explore the interpretability of quantum neural networks using local model-agnostic interpretability measures commonly utilized for classical neural networks.
A feature of our explanations is the delineation of the region in which data samples have been given a random label, likely subjects of inherently random quantum measurements.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interpretability of artificial intelligence (AI) methods, particularly deep neural networks, is of great interest. This heightened focus stems from the widespread use of AI-backed systems. These systems, often relying on intricate neural architectures, can exhibit behavior that is challenging to explain and comprehend. The interpretability of such models is a crucial component of building trusted systems. Many methods exist to approach this problem, but they do not apply straightforwardly to the quantum setting. Here, we explore the interpretability of quantum neural networks using local model-agnostic interpretability measures commonly utilized for classical neural networks. Following this analysis, we generalize a classical technique called LIME, introducing Q-LIME, which produces explanations of quantum neural networks. A feature of our explanations is the delineation of the region in which data samples have been given a random label, likely subjects of inherently random quantum measurements. We view this as a step toward understanding how to build responsible and accountable quantum AI models.
Related papers
- QIXAI: A Quantum-Inspired Framework for Enhancing Classical and Quantum Model Transparency and Understanding [0.0]
Deep learning models are often hindered by their lack of interpretability, rendering them "black boxes"
This paper introduces the QIXAI Framework, a novel approach for enhancing neural network interpretability through quantum-inspired techniques.
The framework applies to both quantum and classical systems, demonstrating its potential to improve interpretability and transparency across a range of models.
arXiv Detail & Related papers (2024-10-21T21:55:09Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
We propose a data-centric learning paradigm combining the strength of neural-network protocols and classical shadows.
Capitalizing on the generalization power of neural networks, this paradigm can be trained offline and excel at predicting previously unseen systems.
We present the instantiation of our paradigm in quantum state tomography and direct fidelity estimation tasks and conduct numerical analysis up to 60 qubits.
arXiv Detail & Related papers (2023-08-22T09:11:53Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Deep learning of many-body observables and quantum information scrambling [0.0]
We explore how the capacity of data-driven deep neural networks in learning the dynamics of physical observables is correlated with the scrambling of quantum information.
We train a neural network to find a mapping from the parameters of a model to the evolution of observables in random quantum circuits.
We show that a particular type of recurrent neural network is extremely powerful in generalizing its predictions within the system size and time window that it has been trained on for both, localized and scrambled regimes.
arXiv Detail & Related papers (2023-02-09T13:14:10Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Gaussian Process Surrogate Models for Neural Networks [6.8304779077042515]
In science and engineering, modeling is a methodology used to understand complex systems whose internal processes are opaque.
We construct a class of surrogate models for neural networks using Gaussian processes.
We demonstrate our approach captures existing phenomena related to the spectral bias of neural networks, and then show that our surrogate models can be used to solve practical problems.
arXiv Detail & Related papers (2022-08-11T20:17:02Z) - Quantum Self-Attention Neural Networks for Text Classification [8.975913540662441]
We propose a new simple network architecture, called the quantum self-attention neural network (QSANN)
We introduce the self-attention mechanism into quantum neural networks and then utilize a Gaussian projected quantum self-attention serving as a sensible quantum version of self-attention.
Our method exhibits robustness to low-level quantum noises and showcases resilience to quantum neural network architectures.
arXiv Detail & Related papers (2022-05-11T16:50:46Z) - The dilemma of quantum neural networks [63.82713636522488]
We show that quantum neural networks (QNNs) fail to provide any benefit over classical learning models.
QNNs suffer from the severely limited effective model capacity, which incurs poor generalization on real-world datasets.
These results force us to rethink the role of current QNNs and to design novel protocols for solving real-world problems with quantum advantages.
arXiv Detail & Related papers (2021-06-09T10:41:47Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.