Hessian Based Smoothing Splines for Manifold Learning
- URL: http://arxiv.org/abs/2302.05025v1
- Date: Fri, 10 Feb 2023 02:49:05 GMT
- Title: Hessian Based Smoothing Splines for Manifold Learning
- Authors: Juno Kim
- Abstract summary: We propose a multidimensional smoothing spline algorithm in the context of manifold learning.
We generalize the bending energy penalty of thin-plate splines to a quadratic form on the Sobolev space of a flat manifold.
The existence and uniqueness of the solution is shown by applying the theory of reproducing Hilbert spaces.
- Score: 0.228438857884398
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a multidimensional smoothing spline algorithm in the context of
manifold learning. We generalize the bending energy penalty of thin-plate
splines to a quadratic form on the Sobolev space of a flat manifold, based on
the Frobenius norm of the Hessian matrix. This leads to a natural definition of
smoothing splines on manifolds, which minimizes square error while optimizing a
global curvature penalty. The existence and uniqueness of the solution is shown
by applying the theory of reproducing kernel Hilbert spaces. The minimizer is
expressed as a combination of Green's functions for the biharmonic operator,
and 'linear' functions of everywhere vanishing Hessian. Furthermore, we utilize
the Hessian estimation procedure from the Hessian Eigenmaps algorithm to
approximate the spline loss when the true manifold is unknown. This yields a
particularly simple quadratic optimization algorithm for smoothing response
values without needing to fit the underlying manifold. Analysis of asymptotic
error and robustness are given, as well as discussion of out-of-sample
prediction methods and applications.
Related papers
- Riemannian stochastic optimization methods avoid strict saddle points [68.80251170757647]
We show that policies under study avoid strict saddle points / submanifolds with probability 1.
This result provides an important sanity check as it shows that, almost always, the limit state of an algorithm can only be a local minimizer.
arXiv Detail & Related papers (2023-11-04T11:12:24Z) - Universal Online Learning with Gradient Variations: A Multi-layer Online Ensemble Approach [57.92727189589498]
We propose an online convex optimization approach with two different levels of adaptivity.
We obtain $mathcalO(log V_T)$, $mathcalO(d log V_T)$ and $hatmathcalO(sqrtV_T)$ regret bounds for strongly convex, exp-concave and convex loss functions.
arXiv Detail & Related papers (2023-07-17T09:55:35Z) - The Inductive Bias of Flatness Regularization for Deep Matrix
Factorization [58.851514333119255]
This work takes the first step toward understanding the inductive bias of the minimum trace of the Hessian solutions in deep linear networks.
We show that for all depth greater than one, with the standard Isometry Property (RIP) on the measurements, minimizing the trace of Hessian is approximately equivalent to minimizing the Schatten 1-norm of the corresponding end-to-end matrix parameters.
arXiv Detail & Related papers (2023-06-22T23:14:57Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
We study optimal procedures for estimating a linear functional based on observational data.
For any convex and symmetric function class $mathcalF$, we derive a non-asymptotic local minimax bound on the mean-squared error.
arXiv Detail & Related papers (2023-01-16T02:57:37Z) - Adaptive Zeroth-Order Optimisation of Nonconvex Composite Objectives [1.7640556247739623]
We analyze algorithms for zeroth-order entropy composite objectives, focusing on dependence on dimensionality.
This is achieved by exploiting low dimensional structure of the decision set using the mirror descent method with an estimation alike function.
To improve the gradient, we replace the classic sampling method based on Rademacher and show that the mini-batch method copes with non-Eucli geometry.
arXiv Detail & Related papers (2022-08-09T07:36:25Z) - Randomized Coordinate Subgradient Method for Nonsmooth Composite
Optimization [11.017632675093628]
Coordinate-type subgradient methods for addressing nonsmooth problems are relatively underexplored due to the set of properties of the Lipschitz-type assumption.
arXiv Detail & Related papers (2022-06-30T02:17:11Z) - Generalization in Supervised Learning Through Riemannian Contraction [4.3604518673788135]
In a supervised learning setting, we show that if an metric 0 is contracting in someian rate $lambda, it is uniformly uniformly rate with $math.
The results hold for gradient and deterministic loss surfaces, in both continuous and stable $-time.
They can be shown to be optimal in certain linear settings, such as over Descent$ convex or strongly convex loss surfaces.
arXiv Detail & Related papers (2022-01-17T23:08:47Z) - Optimal policy evaluation using kernel-based temporal difference methods [78.83926562536791]
We use kernel Hilbert spaces for estimating the value function of an infinite-horizon discounted Markov reward process.
We derive a non-asymptotic upper bound on the error with explicit dependence on the eigenvalues of the associated kernel operator.
We prove minimax lower bounds over sub-classes of MRPs.
arXiv Detail & Related papers (2021-09-24T14:48:20Z) - On Distributed Non-convex Optimization: Projected Subgradient Method For
Weakly Convex Problems in Networks [13.385373310554327]
The Moreau subgradient method converges linear sharpness problems in machine learning.
A distributed implementation of the subgradient method with a theoretical guarantee is proposed.
arXiv Detail & Related papers (2020-04-28T01:01:49Z) - Stochastic Zeroth-order Riemannian Derivative Estimation and
Optimization [15.78743548731191]
We propose an oracle version of the Gaussian smoothing function to overcome the difficulty of non-linearity of manifold non-linearity.
We demonstrate the applicability of our algorithms by results and real-world applications on black-box stiffness control for robotics and black-box attacks to neural networks.
arXiv Detail & Related papers (2020-03-25T06:58:19Z) - Convex Geometry and Duality of Over-parameterized Neural Networks [70.15611146583068]
We develop a convex analytic approach to analyze finite width two-layer ReLU networks.
We show that an optimal solution to the regularized training problem can be characterized as extreme points of a convex set.
In higher dimensions, we show that the training problem can be cast as a finite dimensional convex problem with infinitely many constraints.
arXiv Detail & Related papers (2020-02-25T23:05:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.