論文の概要: Generalized Video Anomaly Event Detection: Systematic Taxonomy and
Comparison of Deep Models
- arxiv url: http://arxiv.org/abs/2302.05087v2
- Date: Sat, 18 Nov 2023 16:09:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-22 20:22:33.157324
- Title: Generalized Video Anomaly Event Detection: Systematic Taxonomy and
Comparison of Deep Models
- Title(参考訳): 一般化ビデオ異常事象検出:系統分類と深部モデルの比較
- Authors: Yang Liu, Dingkang Yang, Yan Wang, Jing Liu, Jun Liu, Azzedine
Boukerche, Peng Sun, Liang Song
- Abstract要約: ビデオ異常検出(VAD)は、インテリジェント監視システムにおいて重要な技術である。
本調査は,GA(Generalized Video Anomaly Event Detection, GVAED)と呼ばれる幅広いスペクトルを含む,教師なしの手法を超えて,従来のVODの範囲を拡張した。
- 参考スコア(独自算出の注目度): 33.43062232461652
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video Anomaly Detection (VAD) serves as a pivotal technology in the
intelligent surveillance systems, enabling the temporal or spatial
identification of anomalous events within videos. While existing reviews
predominantly concentrate on conventional unsupervised methods, they often
overlook the emergence of weakly-supervised and fully-unsupervised approaches.
To address this gap, this survey extends the conventional scope of VAD beyond
unsupervised methods, encompassing a broader spectrum termed Generalized Video
Anomaly Event Detection (GVAED). By skillfully incorporating recent
advancements rooted in diverse assumptions and learning frameworks, this survey
introduces an intuitive taxonomy that seamlessly navigates through
unsupervised, weakly-supervised, supervised and fully-unsupervised VAD
methodologies, elucidating the distinctions and interconnections within these
research trajectories. In addition, this survey facilitates prospective
researchers by assembling a compilation of research resources, including public
datasets, available codebases, programming tools, and pertinent literature.
Furthermore, this survey quantitatively assesses model performance, delves into
research challenges and directions, and outlines potential avenues for future
exploration.
- Abstract(参考訳): ビデオ異常検出(VAD)はインテリジェント監視システムにおいて重要な技術であり、ビデオ内の異常事象の時間的または空間的識別を可能にする。
既存のレビューは、主に従来の教師なしの手法に集中しているが、弱い教師付きアプローチと完全に教師なしアプローチの出現を見落としていることが多い。
このギャップに対処するため、この調査は、一般的なビデオ異常検出(gvaed)と呼ばれる幅広いスペクトルを含む、教師なしの方法を超えて、vadの従来のスコープを拡張している。
多様な仮定や学習フレームワークに根ざした最近の進歩を巧みに取り入れることで、この調査では、教師なし、弱教師付き、教師付き、完全に教師なしのVAD方法論をシームレスにナビゲートする直感的な分類法を導入し、これらの研究軌跡の区別と相互接続を解明する。
さらに、この調査は、公開データセット、利用可能なコードベース、プログラミングツール、関連する文学を含む研究リソースのコンパイルを組み立てることによって、先進的な研究者を促進する。
さらに,本調査では,モデルの性能,課題と方向性を定量的に評価し,今後の探索への可能性について概説する。
関連論文リスト
- Unsupervised Object Discovery: A Comprehensive Survey and Unified Taxonomy [6.346947904159397]
教師なしのオブジェクト発見は、一般に、ラベル付き例を必要とせず、視覚データ中のオブジェクトのローカライズおよび/または分類のタスクとして解釈される。
本調査では,既存のアプローチの詳細な調査を行い,課題と採用手法のファミリーに基づいて,この課題を体系的に分類する。
本稿では,共通データセットとメトリクスの概要を述べるとともに,評価プロトコルの違いによる手法の比較の課題について述べる。
論文 参考訳(メタデータ) (2024-10-30T21:22:48Z) - Deep Graph Anomaly Detection: A Survey and New Perspectives [86.84201183954016]
グラフ異常検出(GAD)は、異常なグラフインスタンス(ノード、エッジ、サブグラフ、グラフ)を特定することを目的とする。
ディープラーニングアプローチ、特にグラフニューラルネットワーク(GNN)は、GADにとって有望なパラダイムとして現れています。
論文 参考訳(メタデータ) (2024-09-16T03:05:11Z) - Deep Learning for Video Anomaly Detection: A Review [52.74513211976795]
ビデオ異常検出(VAD)は、ビデオの正常性から逸脱する行動や事象を発見することを目的としている。
ディープラーニングの時代には、VADタスクには、さまざまなディープラーニングベースの方法が常に現れています。
このレビューでは、半教師付き、弱教師付き、完全教師付き、非教師付き、オープンセットの5つのカテゴリのスペクトルについて取り上げる。
論文 参考訳(メタデータ) (2024-09-09T07:31:16Z) - Investigation of unsupervised and supervised hyperspectral anomaly detection [11.56957155775389]
ハイパースペクトル異常検出(HS-AD)は、キャプチャされたシーンを特徴付け、それらを異常クラスとバックグラウンドクラスに分離する。
我々は以前,ハイパースペクトルアンミキシングと3つの教師なしHS-ADアルゴリズムの等価な投票アンサンブルを設計した。
我々は後に、教師付き分類器を用いて投票アンサンブルの重みを判定し、異種無教師型HS-ADアルゴリズムのハイブリッドを作成する。
論文 参考訳(メタデータ) (2024-08-13T17:20:14Z) - Unifying Unsupervised Graph-Level Anomaly Detection and Out-of-Distribution Detection: A Benchmark [73.58840254552656]
近年,非教師付きグラフレベルの異常検出(GLAD)と教師なしグラフレベルのアウト・オブ・ディストリビューション(OOD)検出が注目されている。
教師なしグラフレベルのOODと異常検出のための統一ベンチマーク(我々の方法)を提案する。
我々のベンチマークでは、4つの実用的な異常とOOD検出シナリオにまたがる35のデータセットを網羅している。
我々は,既存手法の有効性,一般化性,堅牢性,効率性について多次元解析を行った。
論文 参考訳(メタデータ) (2024-06-21T04:07:43Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
本稿では,新しい手法のモジュラーフレームワークであるADerを包括的視覚異常検出ベンチマークとして紹介する。
このベンチマークには、産業ドメインと医療ドメインからの複数のデータセットが含まれており、15の最先端メソッドと9つの包括的なメトリクスを実装している。
我々は,異なる手法の長所と短所を客観的に明らかにし,多クラス視覚異常検出の課題と今後の方向性について考察する。
論文 参考訳(メタデータ) (2024-06-05T13:40:07Z) - Video Anomaly Detection in 10 Years: A Survey and Outlook [10.143205531474907]
ビデオ異常検出(VAD)は、監視、医療、環境監視といった様々な領域において非常に重要である。
この調査では、従来の教師付きトレーニングパラダイムを超えて、弱教師付き、自己監督型、教師なしのアプローチを包含する、ディープラーニングベースのVADを調査している。
論文 参考訳(メタデータ) (2024-05-29T17:56:31Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
監視の弱いビデオ異常検出(VAD)は、ビデオフレームが正常であるか異常であるかを識別するためにビデオレベルラベルを利用する際、顕著な性能を達成した。
近年の研究は、より現実的な、オープンセットのVADに取り組み、異常や正常なビデオから見えない異常を検出することを目的としている。
本稿ではさらに一歩前進し、未確認および未確認の異常を検知・分類するために訓練済みの大規模モデルを活用することを目的とした、オープン語彙ビデオ異常検出(OVVAD)について検討する。
論文 参考訳(メタデータ) (2023-11-13T02:54:17Z) - Functional Anomaly Detection: a Benchmark Study [4.444788548423704]
異常検出は、非常に高い周波数でサンプリングされた測定に依存することができる。
本研究の目的は, 実データセット上の機能的設定において, 異常検出のための最近の手法の性能について検討することである。
論文 参考訳(メタデータ) (2022-01-13T18:20:32Z) - Anomalous Example Detection in Deep Learning: A Survey [98.2295889723002]
本調査は,ディープラーニングアプリケーションにおける異常検出の研究について,構造化された包括的概要を提供する。
既存の技術に対する分類法を,その基礎となる前提と採用アプローチに基づいて提案する。
本稿では,DLシステムに異常検出技術を適用しながら未解決の研究課題を取り上げ,今後の課題について述べる。
論文 参考訳(メタデータ) (2020-03-16T02:47:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。