論文の概要: Unifying Unsupervised Graph-Level Anomaly Detection and Out-of-Distribution Detection: A Benchmark
- arxiv url: http://arxiv.org/abs/2406.15523v1
- Date: Fri, 21 Jun 2024 04:07:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-25 23:34:50.846674
- Title: Unifying Unsupervised Graph-Level Anomaly Detection and Out-of-Distribution Detection: A Benchmark
- Title(参考訳): 教師なしグラフレベル異常検出とアウト・オブ・ディストリビューション検出の統一:ベンチマーク
- Authors: Yili Wang, Yixin Liu, Xu Shen, Chenyu Li, Kaize Ding, Rui Miao, Ying Wang, Shirui Pan, Xin Wang,
- Abstract要約: 近年,非教師付きグラフレベルの異常検出(GLAD)と教師なしグラフレベルのアウト・オブ・ディストリビューション(OOD)検出が注目されている。
教師なしグラフレベルのOODと異常検出のための統一ベンチマーク(我々の方法)を提案する。
我々のベンチマークでは、4つの実用的な異常とOOD検出シナリオにまたがる35のデータセットを網羅している。
我々は,既存手法の有効性,一般化性,堅牢性,効率性について多次元解析を行った。
- 参考スコア(独自算出の注目度): 73.58840254552656
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To build safe and reliable graph machine learning systems, unsupervised graph-level anomaly detection (GLAD) and unsupervised graph-level out-of-distribution (OOD) detection (GLOD) have received significant attention in recent years. Though those two lines of research indeed share the same objective, they have been studied independently in the community due to distinct evaluation setups, creating a gap that hinders the application and evaluation of methods from one to the other. To bridge the gap, in this work, we present a Unified Benchmark for unsupervised Graph-level OOD and anomaly Detection (our method), a comprehensive evaluation framework that unifies GLAD and GLOD under the concept of generalized graph-level OOD detection. Our benchmark encompasses 35 datasets spanning four practical anomaly and OOD detection scenarios, facilitating the comparison of 16 representative GLAD/GLOD methods. We conduct multi-dimensional analyses to explore the effectiveness, generalizability, robustness, and efficiency of existing methods, shedding light on their strengths and limitations. Furthermore, we provide an open-source codebase (https://github.com/UB-GOLD/UB-GOLD) of our method to foster reproducible research and outline potential directions for future investigations based on our insights.
- Abstract(参考訳): 近年,安全で信頼性の高いグラフ機械学習システムを構築するために,教師なしグラフレベルの異常検出(GLAD)と教師なしグラフレベルのアウト・オブ・ディストリビューション(OOD)検出(GLOD)が注目されている。
これらの2つの研究は、実際には同じ目的を共有しているが、異なる評価設定のためにコミュニティ内で独立して研究され、それぞれの方法の適用と評価を妨げるギャップを形成している。
このギャップを埋めるために、この研究では、一般化グラフレベルOOD検出の概念の下でGLADとGLODを統一する総合的な評価フレームワークである、教師なしグラフレベルOODと異常検出のための統一ベンチマーク(我々の方法)を提案する。
本ベンチマークでは,4つの実用的な異常およびOOD検出シナリオにまたがる35のデータセットを網羅し,代表的GLAD/GLOD法の比較を容易にする。
我々は,既存手法の有効性,一般化性,堅牢性,効率性について多次元解析を行い,その強度と限界に光を当てる。
さらに,再現可能な研究を促進するオープンソースコードベース(https://github.com/UB-GOLD/UB-GOLD)を提供し,今後の研究の方向性を考察した。
関連論文リスト
- Dissecting Out-of-Distribution Detection and Open-Set Recognition: A Critical Analysis of Methods and Benchmarks [17.520137576423593]
我々は,コミュニティ内の2つの大きなサブフィールドの総合的なビュー – アウト・オブ・ディストリビューション(OOD)検出とオープンセット認識(OSR) – を提供することを目指している。
我々は,OOD検出における最先端手法とOSR設定との厳密な相互評価を行い,それらの手法の性能の強い相関関係を同定する。
我々は,OOD検出とOSRによって取り組まれている問題を解消する,より大規模なベンチマーク設定を提案する。
論文 参考訳(メタデータ) (2024-08-29T17:55:07Z) - HGOE: Hybrid External and Internal Graph Outlier Exposure for Graph Out-of-Distribution Detection [78.47008997035158]
グラフデータはより多様性を示すが、摂動に対する堅牢性は低く、外れ値の統合を複雑にする。
我々は、グラフOOD検出性能を改善するために、textbfHybrid外部および内部の textbfGraph textbfOutlier textbfExposure (HGOE) の導入を提案する。
論文 参考訳(メタデータ) (2024-07-31T16:55:18Z) - Open-World Lifelong Graph Learning [7.535219325248997]
オープンワールドシナリオにおける生涯グラフ学習の課題について検討する。
我々は、新しいクラスを認識するために、out-of-Distribution (OOD) 検出手法を利用する。
我々は,OOD検出手法とグラフ近傍から収集した情報を組み合わせることで,新しいクラス検出を行うことを提案する。
論文 参考訳(メタデータ) (2023-10-19T08:18:10Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
自己指導型自己学習(BOURNE)に基づく新しい統合グラフ異常検出フレームワークを提案する。
ノードとエッジ間のコンテキスト埋め込みを交換することで、ノードとエッジの異常を相互に検出できる。
BOURNEは、負のサンプリングを必要としないため、大きなグラフを扱う際の効率を高めることができる。
論文 参考訳(メタデータ) (2023-07-28T00:44:57Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - GOOD-D: On Unsupervised Graph Out-Of-Distribution Detection [67.90365841083951]
我々は,OODグラフを検出するための新しいグラフコントラスト学習フレームワークGOOD-Dを開発した。
GOOD-Dは、潜在IDパターンをキャプチャし、異なる粒度のセマンティック不整合に基づいてOODグラフを正確に検出することができる。
教師なしグラフレベルのOOD検出における先駆的な研究として,提案手法と最先端手法を比較した総合的なベンチマークを構築した。
論文 参考訳(メタデータ) (2022-11-08T12:41:58Z) - Benchmarking Node Outlier Detection on Graphs [90.29966986023403]
グラフの外れ値検出は、多くのアプリケーションにおいて、新しいが重要な機械学習タスクである。
UNODと呼ばれるグラフに対して、最初の包括的教師なしノード外乱検出ベンチマークを示す。
論文 参考訳(メタデータ) (2022-06-21T01:46:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。