論文の概要: Neural Capacitated Clustering
- arxiv url: http://arxiv.org/abs/2302.05134v1
- Date: Fri, 10 Feb 2023 09:33:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-13 16:12:12.473650
- Title: Neural Capacitated Clustering
- Title(参考訳): 神経容量型クラスタリング
- Authors: Jonas K. Falkner and Lars Schmidt-Thieme
- Abstract要約: 本稿では,クラスタセンターへのポイントの割り当て確率を予測するニューラルネットワークを学習する,容量クラスタリング問題(CCP)の新しい手法を提案する。
人工データと2つの実世界のデータセットに関する実験では、我々のアプローチは文学の最先端の数学的および解法よりも優れています。
- 参考スコア(独自算出の注目度): 6.155158115218501
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recent work on deep clustering has found new promising methods also for
constrained clustering problems. Their typically pairwise constraints often can
be used to guide the partitioning of the data. Many problems however, feature
cluster-level constraints, e.g. the Capacitated Clustering Problem (CCP), where
each point has a weight and the total weight sum of all points in each cluster
is bounded by a prescribed capacity. In this paper we propose a new method for
the CCP, Neural Capacited Clustering, that learns a neural network to predict
the assignment probabilities of points to cluster centers from a data set of
optimal or near optimal past solutions of other problem instances. During
inference, the resulting scores are then used in an iterative k-means like
procedure to refine the assignment under capacity constraints. In our
experiments on artificial data and two real world datasets our approach
outperforms several state-of-the-art mathematical and heuristic solvers from
the literature. Moreover, we apply our method in the context of a
cluster-first-route-second approach to the Capacitated Vehicle Routing Problem
(CVRP) and show competitive results on the well-known Uchoa benchmark.
- Abstract(参考訳): 深層クラスタリングに関する最近の研究は、制約付きクラスタリング問題にも新しい有望な方法を発見した。
典型的なペアワイズ制約は、しばしばデータのパーティショニングのガイドに使用することができる。
しかし、多くの問題はクラスタレベルの制約(例えばキャパシテーションクラスタリング問題(ccp))を特徴としており、各ポイントは重みを持ち、各クラスタ内のすべてのポイントの合計重量和は所定の容量で区切られている。
本稿では,CCPの新しい手法であるNeural Capacited Clusteringを提案し,他の問題インスタンスの最適あるいはほぼ最適過去の解のデータセットから,クラスタセンターへのポイントの割り当て確率を予測するニューラルネットワークを学習する。
推論の間、結果のスコアは、キャパシティ制約の下で割り当てを洗練するための反復的なk平均のような手順で使用される。
人工データと2つの実世界のデータセットに関する実験では、我々のアプローチは、文学の最先端の数学的、ヒューリスティックな解法よりも優れています。
さらに,本手法をキャパシタ付き車両ルーティング問題(cvrp)にクラスタファーストルート秒アプローチの文脈に適用し,よく知られているuchoaベンチマークで競合結果を示す。
関連論文リスト
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means 1-step dimensionality reduction clustering method は,クラスタリングタスクにおける次元性の呪いに対処する上で,いくつかの進歩をもたらした。
本稿では,K-meansに多様体学習を統合する統一フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-24T08:59:51Z) - Fuzzy K-Means Clustering without Cluster Centroids [21.256564324236333]
ファジィK平均クラスタリングは教師なしデータ分析において重要な手法である。
本稿では,クラスタセントロイドへの依存を完全に排除する,ファジィテクストK-Meansクラスタリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-04-07T12:25:03Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
観測されたラベルを用いてクラスタを復元する効率的なアルゴリズムを考案する。
本稿では,期待値と高い確率でこれらの下位境界との性能を一致させる最初のアルゴリズムであるIACを提案する。
論文 参考訳(メタデータ) (2023-06-18T08:46:06Z) - A One-shot Framework for Distributed Clustered Learning in Heterogeneous
Environments [54.172993875654015]
異種環境における分散学習のためのコミュニケーション効率化手法のファミリーを提案する。
ユーザによるローカル計算に基づくワンショットアプローチと、サーバにおけるクラスタリングベースのアグリゲーションステップは、強力な学習保証を提供する。
厳密な凸問題に対しては,ユーザ毎のデータ点数がしきい値を超える限り,提案手法はサンプルサイズの観点から順序最適平均二乗誤差率を達成する。
論文 参考訳(メタデータ) (2022-09-22T09:04:10Z) - Gradient Based Clustering [72.15857783681658]
本稿では,クラスタリングの品質を計測するコスト関数の勾配を用いて,距離に基づくクラスタリングの一般的な手法を提案する。
アプローチは反復的な2段階の手順(クラスタ割り当てとクラスタセンターのアップデートの代替)であり、幅広い機能に適用できる。
論文 参考訳(メタデータ) (2022-02-01T19:31:15Z) - An Exact Algorithm for Semi-supervised Minimum Sum-of-Squares Clustering [0.5801044612920815]
半教師付きMSSCのための分岐結合アルゴリズムを提案する。
背景知識はペアワイズ・マスタリンクと結びつかない制約として組み込まれている。
提案したグローバル最適化アルゴリズムは,実世界のインスタンスを最大800個のデータポイントまで効率的に解決する。
論文 参考訳(メタデータ) (2021-11-30T17:08:53Z) - Clustering to the Fewest Clusters Under Intra-Cluster Dissimilarity
Constraints [0.0]
均等なクラスタリングは、密度も期待されるクラスの数にも依存せず、相似性の閾値にも依存します。
このクラスタリング問題に対する様々な実践的ソリューション間のトレードオフを特定するために,適切なクラスタリングアルゴリズムをレビューし,評価する。
論文 参考訳(メタデータ) (2021-09-28T12:02:18Z) - Transductive Few-Shot Learning: Clustering is All You Need? [31.21306826132773]
そこで本研究では,プロトタイプをベースとした超越的数ショット学習の汎用的定式化について検討する。
提案手法は, 精度と最適化の観点から, 大きな問題にスケールアップしながら, 競争性能を向上する。
驚いたことに、私たちの一般的なモデルは、最先端の学習と比較して、すでに競争力のあるパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2021-06-16T16:14:01Z) - (k, l)-Medians Clustering of Trajectories Using Continuous Dynamic Time
Warping [57.316437798033974]
本研究では,トラジェクトリの集中型クラスタリングの問題について考察する。
我々はDTWの連続バージョンを距離測定として使用することを提案し、これをCDTW(Continuous dynamic time warping)と呼ぶ。
一連の軌道から中心を計算し、その後反復的に改善する実践的な方法を示す。
論文 参考訳(メタデータ) (2020-12-01T13:17:27Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - A semi-supervised sparse K-Means algorithm [3.04585143845864]
クラスタリングに必要な機能のサブグループを検出するために、教師なしスパースクラスタリング手法を用いることができる。
半教師付き手法では、ラベル付きデータを使用して制約を作成し、クラスタリングソリューションを強化することができる。
提案アルゴリズムは,他の半教師付きアルゴリズムの高性能性を保ち,また,情報的特徴から情報的特徴を識別する能力も保持していることを示す。
論文 参考訳(メタデータ) (2020-03-16T02:05:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。