Optimal Single Qubit Tomography: Realization of Locally Optimal
Measurements on a Quantum Computer
- URL: http://arxiv.org/abs/2302.05140v2
- Date: Mon, 16 Oct 2023 03:20:09 GMT
- Title: Optimal Single Qubit Tomography: Realization of Locally Optimal
Measurements on a Quantum Computer
- Authors: Bacui Li, Lorcan O. Conlon, Ping Koy Lam, Syed M. Assad
- Abstract summary: We implement these measurements on a superconducting quantum computer.
Our experiment produces sufficiently low error to allow the saturation of the theoretical limits.
The results of the simulations show the robustness of the method in characterizing arbitrary qubit states with different amounts of prior knowledge.
- Score: 0.2621730497733947
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum bits, or qubits, are the fundamental building blocks of present
quantum computers. Hence, it is important to be able to characterize the state
of a qubit as accurately as possible. By evaluating the qubit characterization
problem from the viewpoint of quantum metrology, we are able to find optimal
measurements under the assumption of good prior knowledge. We implement these
measurements on a superconducting quantum computer. Our experiment produces
sufficiently low error to allow the saturation of the theoretical limits, given
by the Nagaoka--Hayashi bound. We also present simulations of adaptive
measurement schemes utilizing the proposed method. The results of the
simulations show the robustness of the method in characterizing arbitrary qubit
states with different amounts of prior knowledge.
Related papers
- Benchmarking digital quantum simulations above hundreds of qubits using quantum critical dynamics [42.29248343585333]
We benchmark quantum hardware and error mitigation techniques on up to 133 qubits.
We show reliable control up to a two-qubit gate depth of 28, featuring a maximum of 1396 two-qubit gates.
Results are transferable to applications such as Hamiltonian simulation, variational algorithms, optimization, or quantum machine learning.
arXiv Detail & Related papers (2024-04-11T18:00:05Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Adaptive measurement strategy for quantum subspace methods [0.0]
We propose an adaptive measurement optimization method that is useful for the quantum subspace methods.
The proposed method first determines the measurement protocol for classically simulatable states, and then adaptively updates the protocol of quantum subspace expansion.
As a numerical demonstration, we have shown for excited-state simulation of molecules that we are able to reduce the number of measurements by an order of magnitude.
arXiv Detail & Related papers (2023-11-14T04:00:59Z) - Learning the tensor network model of a quantum state using a few
single-qubit measurements [0.0]
The constantly increasing dimensionality of artificial quantum systems demands highly efficient methods for their characterization and benchmarking.
Here we present a constructive and numerically efficient protocol which learns a tensor network model of an unknown quantum system.
arXiv Detail & Related papers (2023-09-01T11:11:52Z) - Single Qubit State Estimation on NISQ Devices with Limited Resources and
SIC-POVMs [0.0]
We consider the problem of estimating the quantum state of a qubit in a quantum processing unit without conducting direct measurements of it.
We implement and test the circuit using the quantum computer of the Technical Research Centre of Finland as well as an IBM quantum computer.
arXiv Detail & Related papers (2023-08-15T09:27:52Z) - Scalable Simulation of Quantum Measurement Process with Quantum
Computers [13.14263204660076]
We propose qubit models to emulate the quantum measurement process.
One model is motivated by single-photon detection and the other by spin measurement.
We generate Schr"odinger cat-like state, and their corresponding quantum circuits are shown explicitly.
arXiv Detail & Related papers (2022-06-28T14:21:43Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Semi-device-dependent blind quantum tomography [1.3075880857448061]
Current schemes typically require measurement devices for tomography that are a priori calibrated to high precision.
We show that exploiting the natural low-rank structure of quantum states of interest suffices to arrive at a highly scalable blind' tomography scheme.
We numerically demonstrate that robust blind quantum tomography is possible in a practical setting inspired by an implementation of trapped ions.
arXiv Detail & Related papers (2020-06-04T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.