Single Qubit State Estimation on NISQ Devices with Limited Resources and
SIC-POVMs
- URL: http://arxiv.org/abs/2308.07664v1
- Date: Tue, 15 Aug 2023 09:27:52 GMT
- Title: Single Qubit State Estimation on NISQ Devices with Limited Resources and
SIC-POVMs
- Authors: Cristian A. Galvis-Florez, Daniel Reitzner, Simo S\"arkk\"a
- Abstract summary: We consider the problem of estimating the quantum state of a qubit in a quantum processing unit without conducting direct measurements of it.
We implement and test the circuit using the quantum computer of the Technical Research Centre of Finland as well as an IBM quantum computer.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current quantum computers have the potential to overcome classical
computational methods, however, the capability of the algorithms that can be
executed on noisy intermediate-scale quantum devices is limited due to hardware
imperfections. Estimating the state of a qubit is often needed in different
quantum protocols, due to the lack of direct measurements. In this paper, we
consider the problem of estimating the quantum state of a qubit in a quantum
processing unit without conducting direct measurements of it. We consider a
parameterized measurement model to estimate the quantum state, represented as a
quantum circuit, which is optimized using the quantum tomographic transfer
function. We implement and test the circuit using the quantum computer of the
Technical Research Centre of Finland as well as an IBM quantum computer. We
demonstrate that the set of positive operator-valued measurements used for the
estimation is symmetric and informationally complete. Moreover, the resources
needed for qubit estimation are reduced when direct measurements are allowed,
keeping the symmetric property of the measurements.
Related papers
- Group-invariant estimation of symmetric states generated by noisy quantum computers [0.0]
We analyze the density matrices of symmetric quantum states generated by a quantum processor.
We take advantage of an estimation technique that results to be equivalent to the quantum Maximum Entropy (MaxEnt) estimation.
The smart use of prior knowledge of the quantum state symmetries allows for a reduction in both, the number of measurements that need to be made on the system, and the size of the computational problem to store and process the data.
arXiv Detail & Related papers (2024-08-17T12:20:43Z) - A universal scheme to self-test any quantum state and extremal measurement [41.94295877935867]
quantum network considered in this work is the simple star network, which is implementable using current technologies.
For our purposes, we also construct a scheme that can be used to self-test the two-dimensional tomographically complete set of measurements with an arbitrary number of parties.
arXiv Detail & Related papers (2023-12-07T16:20:28Z) - Adaptive measurement strategy for quantum subspace methods [0.0]
We propose an adaptive measurement optimization method that is useful for the quantum subspace methods.
The proposed method first determines the measurement protocol for classically simulatable states, and then adaptively updates the protocol of quantum subspace expansion.
As a numerical demonstration, we have shown for excited-state simulation of molecules that we are able to reduce the number of measurements by an order of magnitude.
arXiv Detail & Related papers (2023-11-14T04:00:59Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
We present a framework to model QRCs and QELMs, showing that they can be concisely described via single effective measurements.
Our analysis paves the way to a more thorough understanding of the capabilities and limitations of both QELMs and QRCs.
arXiv Detail & Related papers (2022-10-03T09:32:28Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Characterizing quantum instruments: from non-demolition measurements to
quantum error correction [48.43720700248091]
In quantum information processing quantum operations are often processed alongside measurements which result in classical data.
Non-unitary dynamical processes can take place on the system, for which common quantum channel descriptions fail to describe the time evolution.
Quantum measurements are correctly treated by means of so-called quantum instruments capturing both classical outputs and post-measurement quantum states.
arXiv Detail & Related papers (2021-10-13T18:00:13Z) - Measurement-Based Quantum Computation [0.0]
Measurement-based quantum computation is a framework of quantum computation.
It originates from the one-way quantum computer of Raussendorf and Briegel.
arXiv Detail & Related papers (2021-09-21T11:45:02Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Convergence of reconstructed density matrix to a pure state using
maximal entropy approach [4.084744267747294]
We propose an alternative approach to QST for the complete reconstruction of the density matrix of a quantum system in a pure state for any number of qubits.
Our goal is to provide a practical inference of a quantum system in a pure state that can find its applications in the field of quantum error mitigation on a real quantum computer.
arXiv Detail & Related papers (2021-07-02T16:58:26Z) - Minimizing estimation runtime on noisy quantum computers [0.0]
"engineered likelihood function" (ELF) is used for carrying out Bayesian inference.
We show how the ELF formalism enhances the rate of information gain in sampling as the physical hardware transitions from the regime of noisy quantum computers.
This technique speeds up a central component of many quantum algorithms, with applications including chemistry, materials, finance, and beyond.
arXiv Detail & Related papers (2020-06-16T17:46:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.