Dual Memory Units with Uncertainty Regulation for Weakly Supervised
Video Anomaly Detection
- URL: http://arxiv.org/abs/2302.05160v1
- Date: Fri, 10 Feb 2023 10:39:40 GMT
- Title: Dual Memory Units with Uncertainty Regulation for Weakly Supervised
Video Anomaly Detection
- Authors: Hang Zhou, Junqing Yu, Wei Yang
- Abstract summary: Existing approaches, both video and segment-level label oriented, mainly focus on extracting representations for anomaly data.
We propose an Uncertainty Regulated Dual Memory Units (UR-DMU) model to learn both the representations of normal data and discriminative features of abnormal data.
Our method outperforms the state-of-the-art methods by a sizable margin.
- Score: 15.991784541576788
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Learning discriminative features for effectively separating abnormal events
from normality is crucial for weakly supervised video anomaly detection
(WS-VAD) tasks. Existing approaches, both video and segment-level label
oriented, mainly focus on extracting representations for anomaly data while
neglecting the implication of normal data. We observe that such a scheme is
sub-optimal, i.e., for better distinguishing anomaly one needs to understand
what is a normal state, and may yield a higher false alarm rate. To address
this issue, we propose an Uncertainty Regulated Dual Memory Units (UR-DMU)
model to learn both the representations of normal data and discriminative
features of abnormal data. To be specific, inspired by the traditional global
and local structure on graph convolutional networks, we introduce a Global and
Local Multi-Head Self Attention (GL-MHSA) module for the Transformer network to
obtain more expressive embeddings for capturing associations in videos. Then,
we use two memory banks, one additional abnormal memory for tackling hard
samples, to store and separate abnormal and normal prototypes and maximize the
margins between the two representations. Finally, we propose an uncertainty
learning scheme to learn the normal data latent space, that is robust to noise
from camera switching, object changing, scene transforming, etc. Extensive
experiments on XD-Violence and UCF-Crime datasets demonstrate that our method
outperforms the state-of-the-art methods by a sizable margin.
Related papers
- ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARC is a generalist GAD approach that enables a one-for-all'' GAD model to detect anomalies across various graph datasets on-the-fly.
equipped with in-context learning, ARC can directly extract dataset-specific patterns from the target dataset.
Extensive experiments on multiple benchmark datasets from various domains demonstrate the superior anomaly detection performance, efficiency, and generalizability of ARC.
arXiv Detail & Related papers (2024-05-27T02:42:33Z) - USD: Unsupervised Soft Contrastive Learning for Fault Detection in Multivariate Time Series [6.055410677780381]
We introduce a combination of data augmentation and soft contrastive learning, specifically designed to capture the multifaceted nature of state behaviors more accurately.
This dual strategy significantly boosts the model's ability to distinguish between normal and abnormal states, leading to a marked improvement in fault detection performance across multiple datasets and settings.
arXiv Detail & Related papers (2024-05-25T14:48:04Z) - DMAD: Dual Memory Bank for Real-World Anomaly Detection [90.97573828481832]
We propose a new framework named Dual Memory bank enhanced representation learning for Anomaly Detection (DMAD)
DMAD employs a dual memory bank to calculate feature distance and feature attention between normal and abnormal patterns.
We evaluate DMAD on the MVTec-AD and VisA datasets.
arXiv Detail & Related papers (2024-03-19T02:16:32Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
Video anomaly detection (VAD) with weak supervision has achieved remarkable performance in utilizing video-level labels to discriminate whether a video frame is normal or abnormal.
Recent studies attempt to tackle a more realistic setting, open-set VAD, which aims to detect unseen anomalies given seen anomalies and normal videos.
This paper takes a step further and explores open-vocabulary video anomaly detection (OVVAD), in which we aim to leverage pre-trained large models to detect and categorize seen and unseen anomalies.
arXiv Detail & Related papers (2023-11-13T02:54:17Z) - Unsupervised Video Anomaly Detection with Diffusion Models Conditioned
on Compact Motion Representations [17.816344808780965]
unsupervised video anomaly detection (VAD) problem involves classifying each frame in a video as normal or abnormal, without any access to labels.
To accomplish this, proposed method employs conditional diffusion models, where the input data is features extracted from pre-trained network.
Our method utilizes a data-driven threshold and considers a high reconstruction error as an indicator of anomalous events.
arXiv Detail & Related papers (2023-07-04T07:36:48Z) - Multi-level Memory-augmented Appearance-Motion Correspondence Framework
for Video Anomaly Detection [1.9511777443446219]
We propose a multi-level memory-augmented appearance-motion correspondence framework.
The latent correspondence between appearance and motion is explored via appearance-motion semantics alignment and semantics replacement training.
Our framework outperforms the state-of-the-art methods, achieving AUCs of 99.6%, 93.8%, and 76.3% on UCSD Ped2, CUHK Avenue, and ShanghaiTech datasets.
arXiv Detail & Related papers (2023-03-09T08:43:06Z) - Self-Supervised Masked Convolutional Transformer Block for Anomaly
Detection [122.4894940892536]
We present a novel self-supervised masked convolutional transformer block (SSMCTB) that comprises the reconstruction-based functionality at a core architectural level.
In this work, we extend our previous self-supervised predictive convolutional attentive block (SSPCAB) with a 3D masked convolutional layer, a transformer for channel-wise attention, as well as a novel self-supervised objective based on Huber loss.
arXiv Detail & Related papers (2022-09-25T04:56:10Z) - Adaptive Memory Networks with Self-supervised Learning for Unsupervised
Anomaly Detection [54.76993389109327]
Unsupervised anomaly detection aims to build models to detect unseen anomalies by only training on the normal data.
We propose a novel approach called Adaptive Memory Network with Self-supervised Learning (AMSL) to address these challenges.
AMSL incorporates a self-supervised learning module to learn general normal patterns and an adaptive memory fusion module to learn rich feature representations.
arXiv Detail & Related papers (2022-01-03T03:40:21Z) - Discriminative-Generative Dual Memory Video Anomaly Detection [81.09977516403411]
Recently, people tried to use a few anomalies for video anomaly detection (VAD) instead of only normal data during the training process.
We propose a DiscRiminative-gEnerative duAl Memory (DREAM) anomaly detection model to take advantage of a few anomalies and solve data imbalance.
arXiv Detail & Related papers (2021-04-29T15:49:01Z) - Unsupervised Video Anomaly Detection via Normalizing Flows with Implicit
Latent Features [8.407188666535506]
Most existing methods use an autoencoder to learn to reconstruct normal videos.
We propose an implicit two-path AE (ITAE), a structure in which two encoders implicitly model appearance and motion features.
For the complex distribution of normal scenes, we suggest normal density estimation of ITAE features.
NF models intensify ITAE performance by learning normality through implicitly learned features.
arXiv Detail & Related papers (2020-10-15T05:02:02Z) - Learning Memory-guided Normality for Anomaly Detection [33.77435699029528]
We present an unsupervised learning approach to anomaly detection that considers the diversity of normal patterns explicitly.
We also present novel feature compactness and separateness losses to train the memory, boosting the discriminative power of both memory items and deeply learned features from normal data.
arXiv Detail & Related papers (2020-03-30T05:30:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.