Discriminative-Generative Dual Memory Video Anomaly Detection
- URL: http://arxiv.org/abs/2104.14430v1
- Date: Thu, 29 Apr 2021 15:49:01 GMT
- Title: Discriminative-Generative Dual Memory Video Anomaly Detection
- Authors: Xin Guo, Zhongming Jin, Chong Chen, Helei Nie, Jianqiang Huang, Deng
Cai, Xiaofei He, Xiansheng Hua
- Abstract summary: Recently, people tried to use a few anomalies for video anomaly detection (VAD) instead of only normal data during the training process.
We propose a DiscRiminative-gEnerative duAl Memory (DREAM) anomaly detection model to take advantage of a few anomalies and solve data imbalance.
- Score: 81.09977516403411
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, people tried to use a few anomalies for video anomaly detection
(VAD) instead of only normal data during the training process. A side effect of
data imbalance occurs when a few abnormal data face a vast number of normal
data. The latest VAD works use triplet loss or data re-sampling strategy to
lessen this problem. However, there is still no elaborately designed structure
for discriminative VAD with a few anomalies. In this paper, we propose a
DiscRiminative-gEnerative duAl Memory (DREAM) anomaly detection model to take
advantage of a few anomalies and solve data imbalance. We use two shallow
discriminators to tighten the normal feature distribution boundary along with a
generator for the next frame prediction. Further, we propose a dual memory
module to obtain a sparse feature representation in both normality and
abnormality space. As a result, DREAM not only solves the data imbalance
problem but also learn a reasonable feature space. Further theoretical analysis
shows that our DREAM also works for the unknown anomalies. Comparing with the
previous methods on UCSD Ped1, UCSD Ped2, CUHK Avenue, and ShanghaiTech, our
model outperforms all the baselines with no extra parameters. The ablation
study demonstrates the effectiveness of our dual memory module and
discriminative-generative network.
Related papers
- ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARC is a generalist GAD approach that enables a one-for-all'' GAD model to detect anomalies across various graph datasets on-the-fly.
equipped with in-context learning, ARC can directly extract dataset-specific patterns from the target dataset.
Extensive experiments on multiple benchmark datasets from various domains demonstrate the superior anomaly detection performance, efficiency, and generalizability of ARC.
arXiv Detail & Related papers (2024-05-27T02:42:33Z) - MLAD: A Unified Model for Multi-system Log Anomaly Detection [35.68387377240593]
We propose MLAD, a novel anomaly detection model that incorporates semantic relational reasoning across multiple systems.
Specifically, we employ Sentence-bert to capture the similarities between log sequences and convert them into highly-dimensional learnable semantic vectors.
We revamp the formulas of the Attention layer to discern the significance of each keyword in the sequence and model the overall distribution of the multi-system dataset.
arXiv Detail & Related papers (2024-01-15T12:51:13Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - LARA: A Light and Anti-overfitting Retraining Approach for Unsupervised
Time Series Anomaly Detection [49.52429991848581]
We propose a Light and Anti-overfitting Retraining Approach (LARA) for deep variational auto-encoder based time series anomaly detection methods (VAEs)
This work aims to make three novel contributions: 1) the retraining process is formulated as a convex problem and can converge at a fast rate as well as prevent overfitting; 2) designing a ruminate block, which leverages the historical data without the need to store them; and 3) mathematically proving that when fine-tuning the latent vector and reconstructed data, the linear formations can achieve the least adjusting errors between the ground truths and the fine-tuned ones.
arXiv Detail & Related papers (2023-10-09T12:36:16Z) - Dual Memory Units with Uncertainty Regulation for Weakly Supervised
Video Anomaly Detection [15.991784541576788]
Existing approaches, both video and segment-level label oriented, mainly focus on extracting representations for anomaly data.
We propose an Uncertainty Regulated Dual Memory Units (UR-DMU) model to learn both the representations of normal data and discriminative features of abnormal data.
Our method outperforms the state-of-the-art methods by a sizable margin.
arXiv Detail & Related papers (2023-02-10T10:39:40Z) - Anomaly Detection via Multi-Scale Contrasted Memory [3.0170109896527086]
We introduce a new two-stage anomaly detector which memorizes during training multi-scale normal prototypes to compute an anomaly deviation score.
Our model highly improves the state-of-the-art performance on a wide range of object, style and local anomalies with up to 35% error relative improvement on CIFAR-10.
arXiv Detail & Related papers (2022-11-16T16:58:04Z) - SreaMRAK a Streaming Multi-Resolution Adaptive Kernel Algorithm [60.61943386819384]
Existing implementations of KRR require that all the data is stored in the main memory.
We propose StreaMRAK - a streaming version of KRR.
We present a showcase study on two synthetic problems and the prediction of the trajectory of a double pendulum.
arXiv Detail & Related papers (2021-08-23T21:03:09Z) - Deep Visual Anomaly detection with Negative Learning [18.79849041106952]
In this paper, we propose anomaly detection with negative learning (ADNL), which employs the negative learning concept for the enhancement of anomaly detection.
The idea is to limit the reconstruction capability of a generative model using the given a small amount of anomaly examples.
This way, the network not only learns to reconstruct normal data but also encloses the normal distribution far from the possible distribution of anomalies.
arXiv Detail & Related papers (2021-05-24T01:48:44Z) - MOCCA: Multi-Layer One-Class ClassificAtion for Anomaly Detection [16.914663209964697]
We propose our deep learning approach to the anomaly detection problem named Multi-LayerOne-Class Classification (MOCCA)
We explicitly leverage the piece-wise nature of deep neural networks by exploiting information extracted at different depths to detect abnormal data instances.
We show that our method reaches superior performances compared to the state-of-the-art approaches available in the literature.
arXiv Detail & Related papers (2020-12-09T08:32:56Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples.
We propose a modular acceleration system, called SUOD, to address it.
arXiv Detail & Related papers (2020-03-11T00:22:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.