論文の概要: Conceptual Views on Tree Ensemble Classifiers
- arxiv url: http://arxiv.org/abs/2302.05270v1
- Date: Fri, 10 Feb 2023 14:33:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-13 15:43:31.246857
- Title: Conceptual Views on Tree Ensemble Classifiers
- Title(参考訳): 木組分類器の概念的視点
- Authors: Tom Hanika and Johannes Hirth
- Abstract要約: ランダムフォレストと関連するツリーベースの手法は、テーブルベースのデータから教師付き学習に人気がある。
並列化の容易さとは別に 分類性能も優れています
この不利を補うために統計手法が用いられることが多いが、局所的な説明、特にグローバルな説明の能力は限られている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Random Forests and related tree-based methods are popular for supervised
learning from table based data. Apart from their ease of parallelization, their
classification performance is also superior. However, this performance,
especially parallelizability, is offset by the loss of explainability.
Statistical methods are often used to compensate for this disadvantage. Yet,
their ability for local explanations, and in particular for global
explanations, is limited. In the present work we propose an algebraic method,
rooted in lattice theory, for the (global) explanation of tree ensembles. In
detail, we introduce two novel conceptual views on tree ensemble classifiers
and demonstrate their explanatory capabilities on Random Forests that were
trained with standard parameters.
- Abstract(参考訳): ランダムフォレストと関連するツリーベースの手法は、テーブルベースのデータから教師付き学習に人気がある。
並列化の容易さとは別に、その分類性能も優れている。
しかし、この性能、特に並列性は説明可能性の喪失によって相殺される。
統計手法はこの不利を補うためにしばしば用いられる。
しかし、局所的な説明の能力、特にグローバルな説明の能力は限られている。
本研究では, 格子理論に根ざした代数的手法を提案し, ツリーアンサンブルの(大域的)説明について述べる。
本稿では,木組分類器に関する2つの新しい概念的見解を紹介し,標準パラメータで訓練されたランダムフォレストにおける説明能力を示す。
関連論文リスト
- Decision Trees for Interpretable Clusters in Mixture Models and Deep Representations [5.65604054654671]
混合モデルに対する説明可能性-雑音比の概念を導入する。
本研究では,混合モデルを入力として,データに依存しない時間に適切な木を構築するアルゴリズムを提案する。
結果の決定ツリーの誤り率について,上と下の境界を証明した。
論文 参考訳(メタデータ) (2024-11-03T14:00:20Z) - A Unified Approach to Extract Interpretable Rules from Tree Ensembles via Integer Programming [2.1408617023874443]
ツリーアンサンブルは非常に人気のある機械学習モデルであり、教師付き分類と回帰タスクの有効性で知られている。
我々の研究は、訓練された木アンサンブルから最適化されたルールのリストを抽出することを目的としており、ユーザーは完全なモデルの予測力をほとんど保持する凝縮された解釈可能なモデルを提供する。
我々の広範な計算実験は,木アンサンブルに対する予測性能と忠実度の観点から,本手法が他のルール抽出法と競合することを示す統計的に有意な証拠を提供する。
論文 参考訳(メタデータ) (2024-06-30T22:33:47Z) - Optimized Feature Generation for Tabular Data via LLMs with Decision Tree Reasoning [53.241569810013836]
本稿では,大規模言語モデル(LLM)を用いて,効率的な特徴生成ルールを同定するフレームワークを提案する。
我々は、自然言語で容易に表現できるため、この推論情報を伝達するために決定木を使用します。
OCTreeは様々なベンチマークで様々な予測モデルの性能を継続的に向上させる。
論文 参考訳(メタデータ) (2024-06-12T08:31:34Z) - Why do Random Forests Work? Understanding Tree Ensembles as
Self-Regularizing Adaptive Smoothers [68.76846801719095]
統計学で広く普及している偏りと分散還元に対する現在の高次二分法は、木のアンサンブルを理解するには不十分である、と我々は主張する。
森林は、通常暗黙的に絡み合っている3つの異なるメカニズムによって、樹木を改良できることを示す。
論文 参考訳(メタデータ) (2024-02-02T15:36:43Z) - Improving the Validity of Decision Trees as Explanations [2.457872341625575]
葉ノード間の最大誤分類誤差を最小限に抑えるために,浅い木を訓練する。
浅い木の全体的な統計性能は最先端の手法に匹敵する。
論文 参考訳(メタデータ) (2023-06-11T21:14:29Z) - Bayesian post-hoc regularization of random forests [0.0]
Random Forestsは、さまざまな機械学習タスクで広く使われている強力なアンサンブル学習アルゴリズムである。
そこで本研究では,葉ノードが根に近づいた場合の信頼性パターンを活用するために,ポストホック正則化を提案する。
各種機械学習データセットを用いて,本手法の性能評価を行った。
論文 参考訳(メタデータ) (2023-06-06T14:15:29Z) - Synergies between Disentanglement and Sparsity: Generalization and
Identifiability in Multi-Task Learning [79.83792914684985]
我々は,最大スパース基底予測器が不整合表現をもたらす条件を提供する新しい識別可能性の結果を証明した。
この理論的な結果から,両レベル最適化問題に基づくアンタングル表現学習の実践的アプローチを提案する。
論文 参考訳(メタデータ) (2022-11-26T21:02:09Z) - Don't Explain Noise: Robust Counterfactuals for Randomized Ensembles [50.81061839052459]
我々は確率論的問題として、堅牢な対実的説明の生成を定式化する。
アンサンブルモデルのロバスト性とベース学習者のロバスト性との関係を示す。
本手法は, 反実的説明から初期観測までの距離をわずかに増加させるだけで, 高いロバスト性を実現する。
論文 参考訳(メタデータ) (2022-05-27T17:28:54Z) - Explaining random forest prediction through diverse rulesets [0.0]
Local Tree eXtractor (LTreeX)は、与えられたテストインスタンスのフォレスト予測を、いくつかの異なるルールで説明することができる。
提案手法は予測性能の点で他の説明可能な手法よりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2022-03-29T12:54:57Z) - Partial Order in Chaos: Consensus on Feature Attributions in the
Rashomon Set [50.67431815647126]
ポストホックなグローバル/ローカルな特徴属性法は、機械学習モデルを理解するために徐々に採用されている。
この手法により局所的・言語的特徴の半順序が生じることを示す。
これらの部分的な順序に現れる特徴間の関係は、既存のアプローチによって提供されたランクにも当てはまることを示す。
論文 参考訳(メタデータ) (2021-10-26T02:53:14Z) - Intersection Regularization for Extracting Semantic Attributes [72.53481390411173]
本稿では,ネットワーク抽出した特徴が意味属性のセットと一致するように,教師付き分類の問題を考える。
例えば、鳥類のイメージを種に分類することを学ぶとき、動物学者が鳥類を分類するために使用する特徴の出現を観察したい。
本稿では,複数層パーセプトロン(MLP)と並列決定木を併用した,離散的なトップレベルアクティベーションを持つニューラルネットワークのトレーニングを提案する。
論文 参考訳(メタデータ) (2021-03-22T14:32:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。