Combining Reconstruction and Contrastive Methods for Multimodal Representations in RL
- URL: http://arxiv.org/abs/2302.05342v4
- Date: Wed, 26 Jun 2024 13:28:35 GMT
- Title: Combining Reconstruction and Contrastive Methods for Multimodal Representations in RL
- Authors: Philipp Becker, Sebastian Mossburger, Fabian Otto, Gerhard Neumann,
- Abstract summary: Learning self-supervised representations using reconstruction or contrastive losses improves performance and sample complexity of image-based and multimodal reinforcement learning (RL)
Here, different self-supervised loss functions have distinct advantages and limitations depending on the information density of the underlying sensor modality.
We propose Contrastive Reconstructive Aggregated representation Learning (CoRAL), a unified framework enabling us to choose the most appropriate self-supervised loss for each sensor modality.
- Score: 16.792949555151978
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning self-supervised representations using reconstruction or contrastive losses improves performance and sample complexity of image-based and multimodal reinforcement learning (RL). Here, different self-supervised loss functions have distinct advantages and limitations depending on the information density of the underlying sensor modality. Reconstruction provides strong learning signals but is susceptible to distractions and spurious information. While contrastive approaches can ignore those, they may fail to capture all relevant details and can lead to representation collapse. For multimodal RL, this suggests that different modalities should be treated differently based on the amount of distractions in the signal. We propose Contrastive Reconstructive Aggregated representation Learning (CoRAL), a unified framework enabling us to choose the most appropriate self-supervised loss for each sensor modality and allowing the representation to better focus on relevant aspects. We evaluate CoRAL's benefits on a wide range of tasks with images containing distractions or occlusions, a new locomotion suite, and a challenging manipulation suite with visually realistic distractions. Our results show that learning a multimodal representation by combining contrastive and reconstruction-based losses can significantly improve performance and solve tasks that are out of reach for more naive representation learning approaches and other recent baselines.
Related papers
- Multimodal Information Bottleneck for Deep Reinforcement Learning with Multiple Sensors [10.454194186065195]
Reinforcement learning has achieved promising results on robotic control tasks but struggles to leverage information effectively.
Recent works construct auxiliary losses based on reconstruction or mutual information to extract joint representations from multiple sensory inputs.
We argue that compressing information in the learned joint representations about raw multimodal observations is helpful.
arXiv Detail & Related papers (2024-10-23T04:32:37Z) - Visual Imitation Learning with Calibrated Contrastive Representation [44.63125396964309]
Adversarial Imitation Learning (AIL) allows the agent to reproduce expert behavior with low-dimensional states and actions.
This paper proposes a simple and effective solution by incorporating contrastive representative learning into visual AIL framework.
arXiv Detail & Related papers (2024-01-21T04:18:30Z) - Sequential Action-Induced Invariant Representation for Reinforcement
Learning [1.2046159151610263]
How to accurately learn task-relevant state representations from high-dimensional observations with visual distractions is a challenging problem in visual reinforcement learning.
We propose a Sequential Action-induced invariant Representation (SAR) method, in which the encoder is optimized by an auxiliary learner to only preserve the components that follow the control signals of sequential actions.
arXiv Detail & Related papers (2023-09-22T05:31:55Z) - VIBR: Learning View-Invariant Value Functions for Robust Visual Control [3.2307366446033945]
VIBR (View-Invariant Bellman Residuals) is a method that combines multi-view training and invariant prediction to reduce out-of-distribution gap for RL based visuomotor control.
We show that VIBR outperforms existing methods on complex visuo-motor control environment with high visual perturbation.
arXiv Detail & Related papers (2023-06-14T14:37:34Z) - Accelerating exploration and representation learning with offline
pre-training [52.6912479800592]
We show that exploration and representation learning can be improved by separately learning two different models from a single offline dataset.
We show that learning a state representation using noise-contrastive estimation and a model of auxiliary reward can significantly improve the sample efficiency on the challenging NetHack benchmark.
arXiv Detail & Related papers (2023-03-31T18:03:30Z) - R\'enyiCL: Contrastive Representation Learning with Skew R\'enyi
Divergence [78.15455360335925]
We present a new robust contrastive learning scheme, coined R'enyiCL, which can effectively manage harder augmentations.
Our method is built upon the variational lower bound of R'enyi divergence.
We show that R'enyi contrastive learning objectives perform innate hard negative sampling and easy positive sampling simultaneously.
arXiv Detail & Related papers (2022-08-12T13:37:05Z) - Real-World Image Super-Resolution by Exclusionary Dual-Learning [98.36096041099906]
Real-world image super-resolution is a practical image restoration problem that aims to obtain high-quality images from in-the-wild input.
Deep learning-based methods have achieved promising restoration quality on real-world image super-resolution datasets.
We propose Real-World image Super-Resolution by Exclusionary Dual-Learning (RWSR-EDL) to address the feature diversity in perceptual- and L1-based cooperative learning.
arXiv Detail & Related papers (2022-06-06T13:28:15Z) - Return-Based Contrastive Representation Learning for Reinforcement
Learning [126.7440353288838]
We propose a novel auxiliary task that forces the learnt representations to discriminate state-action pairs with different returns.
Our algorithm outperforms strong baselines on complex tasks in Atari games and DeepMind Control suite.
arXiv Detail & Related papers (2021-02-22T13:04:18Z) - Deep Partial Multi-View Learning [94.39367390062831]
We propose a novel framework termed Cross Partial Multi-View Networks (CPM-Nets)
We fifirst provide a formal defifinition of completeness and versatility for multi-view representation.
We then theoretically prove the versatility of the learned latent representations.
arXiv Detail & Related papers (2020-11-12T02:29:29Z) - Dynamic Dual-Attentive Aggregation Learning for Visible-Infrared Person
Re-Identification [208.1227090864602]
Visible-infrared person re-identification (VI-ReID) is a challenging cross-modality pedestrian retrieval problem.
Existing VI-ReID methods tend to learn global representations, which have limited discriminability and weak robustness to noisy images.
We propose a novel dynamic dual-attentive aggregation (DDAG) learning method by mining both intra-modality part-level and cross-modality graph-level contextual cues for VI-ReID.
arXiv Detail & Related papers (2020-07-18T03:08:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.