Cross-polarization extinction enhancement and spin-orbit coupling of
light for quantum-dot cavity-QED spectroscopy
- URL: http://arxiv.org/abs/2302.05359v1
- Date: Fri, 10 Feb 2023 16:19:50 GMT
- Title: Cross-polarization extinction enhancement and spin-orbit coupling of
light for quantum-dot cavity-QED spectroscopy
- Authors: P. Steindl, J.A. Frey, J. Norman, J.E. Bowers, D. Bouwmeester, W.
L\"offler
- Abstract summary: We show that Fresnel-reflection birefringence in combination with single-mode filtering counteracting spin-orbit coupling effects enables a three-order of magnitude improvement of polarization extinction.
We then demonstrate this method for cross-polarization extinction enhancement for a resonantly excited semiconductor quantum dot in a birefringent optical micro cavity.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Resonant laser spectroscopy is essential for the characterization, operation,
and manipulation of single quantum systems such as semiconductor quantum dots.
The separation of the weak resonance fluorescence from the excitation laser is
key for high-quality single- and entangled photon sources. This is often
achieved by cross-polarization laser extinction, which is limited by the
quality of the optical elements. Recently, it was discovered that
Fresnel-reflection birefringence in combination with single-mode filtering
counteracting spin-orbit coupling effects enables a three-order of magnitude
improvement of polarization extinction [PRX 11, 021007 (2021)]. Here, we first
investigate multiple reflections and analyze beam reshaping, and observe that
the single-reflection extinction enhancement is optimal. We then demonstrate
this method for cross-polarization extinction enhancement for a resonantly
excited semiconductor quantum dot in a birefringent optical micro cavity, and
observe a 10x improvement of single-photon contrast.
Related papers
- Broadband biphoton source for quantum optical coherence tomography based on a Michelson interferometer [39.58317527488534]
We describe and experimentally demonstrate a novel technique for generation of a bright collinear biphoton field with a broad spectrum.
As the most straightforward application of the source, we employ Michelson interferometer-based quantum optical coherence tomography (Q OCT)
arXiv Detail & Related papers (2024-01-31T13:52:37Z) - Strong coupling between a single photon and a photon pair [43.14346227009377]
We report an experimental observation of the strong coupling between a single photon and a photon pair in an ultrastrongly-coupled circuit-QED system.
Results represent a key step towards a new regime of quantum nonlinear optics.
arXiv Detail & Related papers (2024-01-05T10:23:14Z) - Cavity-enhanced single photon emission from a single impurity-bound
exciton [42.2225785045544]
Impurity-bound excitons inSe quantum wells are bright single photon emitters.
We demonstrate cavity-enhanced emission from a single impurity-bound exciton in aSe quantum well.
arXiv Detail & Related papers (2023-09-04T18:06:54Z) - Solution-phase single-particle spectroscopy for probing multi-polaronic
dynamics in quantum emitters at femtosecond resolution [6.722815153728718]
We develop a solution-phase single-particle pump-probe spectroscopy with photon correlation detection that captures sample-averaged dynamics in single molecules and/or defect states with unprecedented clarity at femtosecond resolution.
Our work provides a framework for ultrafast spectroscopy in single emitters, molecules, or defects prone to photoluminescence intermittency and heterogeneity, opening new avenues of extreme-scale characterization and synthetic improvements for quantum information applications.
arXiv Detail & Related papers (2023-04-03T06:14:14Z) - Swing-up dynamics in quantum emitter cavity systems [0.0]
In the Super scheme, excitation of a quantum emitter is achieved with two off-resonant, red-detuned laser pulses.
We extend this promising method to quantum emitters, specifically semiconductor quantum dots, inside a resonant optical cavity.
arXiv Detail & Related papers (2023-03-22T14:42:57Z) - Quantum interferometric two-photon excitation spectroscopy [7.708943730059219]
We present an approach for quantum interferometric two-photon excitation spectroscopy.
Our proposed protocol overcomes the difficulties of engineering two-photon joint spectral intensities and fine-tuned absorption-frequency selection.
Results may significantly facilitate the use of quantum interferometric spectroscopy for extracting the information about the electronic structure of the two-photon excited-state manifold of atoms or molecules.
arXiv Detail & Related papers (2021-11-23T15:44:08Z) - On-chip single-photon subtraction by individual silicon vacancy centers
in a laser-written diamond waveguide [48.7576911714538]
Laser-written diamond photonics offers three-dimensional fabrication capabilities and large mode-field diameters matched to fiber optic technology.
To realize large cooperativities, we combine excitation of single shallow-implanted silicon vacancy centers via large numerical aperture optics.
We demonstrate single-emitter extinction measurements with a cooperativity of 0.153 and a beta factor of 13% yielding 15.3% as lower bound for the quantum efficiency of a single emitter.
arXiv Detail & Related papers (2021-11-02T16:01:15Z) - Double-Pulse Generation of Indistinguishable Single Photons with
Optically Controlled Polarization [11.085249064902994]
We show a method to generate indistinguishable single photons with optically controlled polarization by two laser pulses off-resonant with neutral exciton states.
Our work makes an important step towards indistinguishable single-photon sources with near-unity collection efficiency.
arXiv Detail & Related papers (2021-09-20T03:07:18Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Spectrally reconfigurable quantum emitters enabled by optimized fast
modulation [42.39394379814941]
Spectral control in solid state platforms such as color centers, rare earth ions, and quantum dots is attractive for realizing such applications on-chip.
We propose the use of frequency-modulated optical transitions for spectral engineering of single photon emission.
Our results suggest that frequency modulation is a powerful technique for the generation of new light states with unprecedented control over the spectral and temporal properties of single photons.
arXiv Detail & Related papers (2020-03-27T18:24:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.