Oracle-Efficient Smoothed Online Learning for Piecewise Continuous Decision Making
- URL: http://arxiv.org/abs/2302.05430v2
- Date: Tue, 19 Mar 2024 15:22:18 GMT
- Title: Oracle-Efficient Smoothed Online Learning for Piecewise Continuous Decision Making
- Authors: Adam Block, Alexander Rakhlin, Max Simchowitz,
- Abstract summary: This work introduces a new notion of complexity, the generalized bracketing numbers, which marries constraints on the adversary to the size of the space.
We then instantiate our bounds in several problems of interest, including online prediction and planning of piecewise continuous functions.
- Score: 73.48977854003697
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Smoothed online learning has emerged as a popular framework to mitigate the substantial loss in statistical and computational complexity that arises when one moves from classical to adversarial learning. Unfortunately, for some spaces, it has been shown that efficient algorithms suffer an exponentially worse regret than that which is minimax optimal, even when the learner has access to an optimization oracle over the space. To mitigate that exponential dependence, this work introduces a new notion of complexity, the generalized bracketing numbers, which marries constraints on the adversary to the size of the space, and shows that an instantiation of Follow-the-Perturbed-Leader can attain low regret with the number of calls to the optimization oracle scaling optimally with respect to average regret. We then instantiate our bounds in several problems of interest, including online prediction and planning of piecewise continuous functions, which has many applications in fields as diverse as econometrics and robotics.
Related papers
- Learning to Optimize for Mixed-Integer Non-linear Programming [20.469394148261838]
Mixed-integer non-NLP programs (MINLPs) arise in various domains, such as energy systems and transportation, but are notoriously difficult to solve.
Recent advances in machine learning have led to remarkable successes in optimization, area broadly known as learning to optimize.
We propose two differentiable correction layers that generate integer outputs while preserving gradient.
arXiv Detail & Related papers (2024-10-14T20:14:39Z) - Efficient Methods for Non-stationary Online Learning [67.3300478545554]
We present efficient methods for optimizing dynamic regret and adaptive regret, which reduce the number of projections per round from $mathcalO(log T)$ to $1$.
Our technique hinges on the reduction mechanism developed in parameter-free online learning and requires non-trivial twists on non-stationary online methods.
arXiv Detail & Related papers (2023-09-16T07:30:12Z) - Smoothed Online Learning for Prediction in Piecewise Affine Systems [43.64498536409903]
This paper builds on the recently developed smoothed online learning framework.
It provides the first algorithms for prediction and simulation in piecewise affine systems.
arXiv Detail & Related papers (2023-01-26T15:54:14Z) - Smoothed Online Learning is as Easy as Statistical Learning [77.00766067963195]
We provide the first oracle-efficient, no-regret algorithms in this setting.
We show that if a function class is learnable in the classical setting, then there is an oracle-efficient, no-regret algorithm for contextual bandits.
arXiv Detail & Related papers (2022-02-09T19:22:34Z) - Provable Reinforcement Learning with a Short-Term Memory [68.00677878812908]
We study a new subclass of POMDPs, whose latent states can be decoded by the most recent history of a short length $m$.
In particular, in the rich-observation setting, we develop new algorithms using a novel "moment matching" approach with a sample complexity that scales exponentially.
Our results show that a short-term memory suffices for reinforcement learning in these environments.
arXiv Detail & Related papers (2022-02-08T16:39:57Z) - Adaptivity and Non-stationarity: Problem-dependent Dynamic Regret for Online Convex Optimization [70.4342220499858]
We introduce novel online algorithms that can exploit smoothness and replace the dependence on $T$ in dynamic regret with problem-dependent quantities.
Our results are adaptive to the intrinsic difficulty of the problem, since the bounds are tighter than existing results for easy problems and safeguard the same rate in the worst case.
arXiv Detail & Related papers (2021-12-29T02:42:59Z) - Near-Linear Time Algorithm with Near-Logarithmic Regret Per Switch for
Mixable/Exp-Concave Losses [0.0]
We study the online optimization of mixable loss functions with logarithmic static regret in a dynamic environment.
For the first time in literature, we show that it is also possible to achieve near-logarithmic regret per switch with sub-polynomial complexity per time.
arXiv Detail & Related papers (2021-09-28T15:06:31Z) - Model-Free Online Learning in Unknown Sequential Decision Making
Problems and Games [114.90723492840499]
In large two-player zero-sum imperfect-information games, modern extensions of counterfactual regret minimization (CFR) are currently the practical state of the art for computing a Nash equilibrium.
We formalize an online learning setting in which the strategy space is not known to the agent.
We give an efficient algorithm that achieves $O(T3/4)$ regret with high probability for that setting, even when the agent faces an adversarial environment.
arXiv Detail & Related papers (2021-03-08T04:03:24Z) - Learning fine-grained search space pruning and heuristics for
combinatorial optimization [5.72274610208488]
We propose a framework for leveraging machine learning techniques to scale-up exact optimization algorithms.
Our framework learns the relatively simpler task of pruning the elements in order to reduce the size of the problem instances.
We show that our framework can prune a large fraction of the input graph and still detect almost all of the maximum cliques.
arXiv Detail & Related papers (2020-01-05T13:10:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.