Sequential Embedding-based Attentive (SEA) classifier for malware
classification
- URL: http://arxiv.org/abs/2302.05728v1
- Date: Sat, 11 Feb 2023 15:48:16 GMT
- Title: Sequential Embedding-based Attentive (SEA) classifier for malware
classification
- Authors: Muhammad Ahmed, Anam Qureshi, Jawwad Ahmed Shamsi, Murk Marvi
- Abstract summary: We come up with a solution for malware detection using state-of-the-art natural language processing (NLP) techniques.
Our proposed model is tested on the benchmark data set with an accuracy and log loss score of 99.13 percent and 0.04 respectively.
- Score: 1.290382979353427
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The tremendous growth in smart devices has uplifted several security threats.
One of the most prominent threats is malicious software also known as malware.
Malware has the capability of corrupting a device and collapsing an entire
network. Therefore, its early detection and mitigation are extremely important
to avoid catastrophic effects. In this work, we came up with a solution for
malware detection using state-of-the-art natural language processing (NLP)
techniques. Our main focus is to provide a lightweight yet effective classifier
for malware detection which can be used for heterogeneous devices, be it a
resource constraint device or a resourceful machine. Our proposed model is
tested on the benchmark data set with an accuracy and log loss score of 99.13
percent and 0.04 respectively.
Related papers
- MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
We propose MASKDROID, a powerful detector with a strong discriminative ability to identify malware.
We introduce a masking mechanism into the Graph Neural Network based framework, forcing MASKDROID to recover the whole input graph.
This strategy enables the model to understand the malicious semantics and learn more stable representations, enhancing its robustness against adversarial attacks.
arXiv Detail & Related papers (2024-09-29T07:22:47Z) - Discovering Malicious Signatures in Software from Structural
Interactions [7.06449725392051]
We propose a novel malware detection approach that leverages deep learning, mathematical techniques, and network science.
Our approach focuses on static and dynamic analysis and utilizes the Low-Level Virtual Machine (LLVM) to profile applications within a complex network.
Our approach marks a substantial improvement in malware detection, providing a notably more accurate and efficient solution.
arXiv Detail & Related papers (2023-12-19T23:42:20Z) - MALITE: Lightweight Malware Detection and Classification for Constrained Devices [1.8296825497899678]
We present MALITE, a lightweight malware analysis system that can classify various malware families and distinguish between benign and malicious binaries.
We have designed MALITE-MN, a lightweight neural network based architecture and MALITE-HRF, an ultra lightweight random forest based method that uses histogram features extracted by a sliding window.
The results show that MALITE-MN and MALITE-HRF not only accurately identify and classify malware but also respectively consume several orders of magnitude lower resources.
arXiv Detail & Related papers (2023-09-06T18:17:38Z) - A survey on hardware-based malware detection approaches [45.24207460381396]
Hardware-based malware detection approaches leverage hardware performance counters and machine learning prowess.
We meticulously analyze the approach, unraveling the most common methods, algorithms, tools, and datasets that shape its contours.
The discussion extends to crafting mixed hardware and software approaches for collaborative efficacy, essential enhancements in hardware monitoring units, and a better understanding of the correlation between hardware events and malware applications.
arXiv Detail & Related papers (2023-03-22T13:00:41Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
We develop a certified defense, DRSM (De-Randomized Smoothed MalConv), by redesigning the de-randomized smoothing technique for the domain of malware detection.
Specifically, we propose a window ablation scheme to provably limit the impact of adversarial bytes while maximally preserving local structures of the executables.
We are the first to offer certified robustness in the realm of static detection of malware executables.
arXiv Detail & Related papers (2023-03-20T17:25:22Z) - Self-Supervised Vision Transformers for Malware Detection [0.0]
This paper presents SHERLOCK, a self-supervision based deep learning model to detect malware based on the Vision Transformer (ViT) architecture.
Our proposed model is also able to outperform state-of-the-art techniques for multi-class malware classification of types and family with macro-F1 score of.497 and.491 respectively.
arXiv Detail & Related papers (2022-08-15T07:49:58Z) - Adversarial Attacks against Windows PE Malware Detection: A Survey of
the State-of-the-Art [44.975088044180374]
This paper focuses on malware with the file format of portable executable (PE) in the family of Windows operating systems, namely Windows PE malware.
We first outline the general learning framework of Windows PE malware detection based on ML/DL.
We then highlight three unique challenges of performing adversarial attacks in the context of PE malware.
arXiv Detail & Related papers (2021-12-23T02:12:43Z) - Mate! Are You Really Aware? An Explainability-Guided Testing Framework
for Robustness of Malware Detectors [49.34155921877441]
We propose an explainability-guided and model-agnostic testing framework for robustness of malware detectors.
We then use this framework to test several state-of-the-art malware detectors' abilities to detect manipulated malware.
Our findings shed light on the limitations of current malware detectors, as well as how they can be improved.
arXiv Detail & Related papers (2021-11-19T08:02:38Z) - A Survey of Machine Learning Algorithms for Detecting Malware in IoT
Firmware [0.0]
This paper employs a number of machine learning algorithms to classify IoT firmware and the best performing models are reported.
Deep learning approaches including Convolutional and Fully Connected Neural Networks are also explored.
arXiv Detail & Related papers (2021-11-03T17:55:51Z) - Binary Black-box Evasion Attacks Against Deep Learning-based Static
Malware Detectors with Adversarial Byte-Level Language Model [11.701290164823142]
MalRNN is a novel approach to automatically generate evasive malware variants without restrictions.
MalRNN effectively evades three recent deep learning-based malware detectors and outperforms current benchmark methods.
arXiv Detail & Related papers (2020-12-14T22:54:53Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
We show how an attacker can launch a sophisticated and efficient poisoning attack targeting the dataset used to train a malware classifier.
As opposed to other poisoning attacks in the malware detection domain, our attack does not focus on malware families but rather on specific malware instances that contain an implanted trigger.
We propose a comprehensive detection approach that could serve as a future sophisticated defense against this newly discovered severe threat.
arXiv Detail & Related papers (2020-10-30T15:27:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.