Multispectral Contrastive Learning with Viewmaker Networks
- URL: http://arxiv.org/abs/2302.05757v3
- Date: Sat, 3 Jun 2023 21:39:19 GMT
- Title: Multispectral Contrastive Learning with Viewmaker Networks
- Authors: Jasmine Bayrooti, Noah Goodman, Alex Tamkin
- Abstract summary: We focus on applying contrastive learning approaches to a variety of remote sensing datasets.
We show that Viewmaker networks are promising for producing views in this setting without requiring extensive domain knowledge and trial and error.
- Score: 8.635434871127512
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Contrastive learning methods have been applied to a range of domains and
modalities by training models to identify similar "views" of data points.
However, specialized scientific modalities pose a challenge for this paradigm,
as identifying good views for each scientific instrument is complex and
time-intensive. In this paper, we focus on applying contrastive learning
approaches to a variety of remote sensing datasets. We show that Viewmaker
networks, a recently proposed method for generating views, are promising for
producing views in this setting without requiring extensive domain knowledge
and trial and error. We apply Viewmaker to four multispectral imaging problems,
each with a different format, finding that Viewmaker can outperform cropping-
and reflection-based methods for contrastive learning in every case when
evaluated on downstream classification tasks. This provides additional evidence
that domain-agnostic methods can empower contrastive learning to scale to
real-world scientific domains. Open source code can be found at
https://github.com/jbayrooti/divmaker.
Related papers
- Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
The training of an efficacious deep learning model requires large data with diverse styles and qualities.
A novel contrastive learning is developed to equip the deep learning models with better style generalization capability.
The proposed method has been evaluated extensively and rigorously with mammograms from various vendor style domains and several public datasets.
arXiv Detail & Related papers (2023-04-20T11:40:21Z) - Cross-view Graph Contrastive Representation Learning on Partially
Aligned Multi-view Data [52.491074276133325]
Multi-view representation learning has developed rapidly over the past decades and has been applied in many fields.
We propose a new cross-view graph contrastive learning framework, which integrates multi-view information to align data and learn latent representations.
Experiments conducted on several real datasets demonstrate the effectiveness of the proposed method on the clustering and classification tasks.
arXiv Detail & Related papers (2022-11-08T09:19:32Z) - Latent Heterogeneous Graph Network for Incomplete Multi-View Learning [57.49776938934186]
We propose a novel Latent Heterogeneous Graph Network (LHGN) for incomplete multi-view learning.
By learning a unified latent representation, a trade-off between consistency and complementarity among different views is implicitly realized.
To avoid any inconsistencies between training and test phase, a transductive learning technique is applied based on graph learning for classification tasks.
arXiv Detail & Related papers (2022-08-29T15:14:21Z) - Matching Multiple Perspectives for Efficient Representation Learning [0.0]
We present an approach that combines self-supervised learning with a multi-perspective matching technique.
We show that the availability of multiple views of the same object combined with a variety of self-supervised pretraining algorithms can lead to improved object classification performance.
arXiv Detail & Related papers (2022-08-16T10:33:13Z) - Domain Generalization for Mammography Detection via Multi-style and
Multi-view Contrastive Learning [47.30824944649112]
A new contrastive learning scheme is developed to augment the generalization capability of deep learning model to various vendors with limited resources.
The backbone network is trained with a multi-style and multi-view unsupervised self-learning scheme for the embedding of invariant features to various vendor-styles.
The experimental results suggest that our approach can effectively improve detection performance on both seen and unseen domains.
arXiv Detail & Related papers (2021-11-21T14:29:50Z) - CoCon: Cooperative-Contrastive Learning [52.342936645996765]
Self-supervised visual representation learning is key for efficient video analysis.
Recent success in learning image representations suggests contrastive learning is a promising framework to tackle this challenge.
We introduce a cooperative variant of contrastive learning to utilize complementary information across views.
arXiv Detail & Related papers (2021-04-30T05:46:02Z) - Seeing All the Angles: Learning Multiview Manipulation Policies for
Contact-Rich Tasks from Demonstrations [7.51557557629519]
A successful multiview policy could be deployed on a mobile manipulation platform.
We demonstrate that a multiview policy can be found through imitation learning by collecting data from a variety of viewpoints.
We show that learning from multiview data has little, if any, penalty to performance for a fixed-view task compared to learning with an equivalent amount of fixed-view data.
arXiv Detail & Related papers (2021-04-28T17:43:29Z) - A Survey on Contrastive Self-supervised Learning [0.0]
Self-supervised learning has gained popularity because of its ability to avoid the cost of annotating large-scale datasets.
Contrastive learning has recently become a dominant component in self-supervised learning methods for computer vision, natural language processing (NLP), and other domains.
This paper provides an extensive review of self-supervised methods that follow the contrastive approach.
arXiv Detail & Related papers (2020-10-31T21:05:04Z) - Generalized Multi-view Shared Subspace Learning using View Bootstrapping [43.027427742165095]
Key objective in multi-view learning is to model the information common to multiple parallel views of a class of objects/events to improve downstream learning tasks.
We present a neural method based on multi-view correlation to capture the information shared across a large number of views by subsampling them in a view-agnostic manner during training.
Experiments on spoken word recognition, 3D object classification and pose-invariant face recognition demonstrate the robustness of view bootstrapping to model a large number of views.
arXiv Detail & Related papers (2020-05-12T20:35:14Z) - Generative Partial Multi-View Clustering [133.36721417531734]
We propose a generative partial multi-view clustering model, named as GP-MVC, to address the incomplete multi-view problem.
First, multi-view encoder networks are trained to learn common low-dimensional representations, followed by a clustering layer to capture the consistent cluster structure across multiple views.
Second, view-specific generative adversarial networks are developed to generate the missing data of one view conditioning on the shared representation given by other views.
arXiv Detail & Related papers (2020-03-29T17:48:27Z) - Exploit Clues from Views: Self-Supervised and Regularized Learning for
Multiview Object Recognition [66.87417785210772]
This work investigates the problem of multiview self-supervised learning (MV-SSL)
A novel surrogate task for self-supervised learning is proposed by pursuing "object invariant" representation.
Experiments shows that the recognition and retrieval results using view invariant prototype embedding (VISPE) outperform other self-supervised learning methods.
arXiv Detail & Related papers (2020-03-28T07:06:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.