論文の概要: Review of Extreme Multilabel Classification
- arxiv url: http://arxiv.org/abs/2302.05971v2
- Date: Sun, 26 Mar 2023 19:39:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-29 00:35:13.665096
- Title: Review of Extreme Multilabel Classification
- Title(参考訳): エクストリームマルチラベル分類の概観
- Authors: Arpan Dasgupta, Siddhant Katyan, Shrutimoy Das, Pawan Kumar
- Abstract要約: 極端なマルチラベル分類(英: Extreme multilabel classification、XML)は、機械学習における活発な関心領域である。
コミュニティは、頭や尾のラベルの予測を正しく識別するために有用なメトリクスセットを考案した。
- 参考スコア(独自算出の注目度): 1.888738346075831
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Extreme multilabel classification or XML, is an active area of interest in
machine learning. Compared to traditional multilabel classification, here the
number of labels is extremely large, hence, the name extreme multilabel
classification. Using classical one versus all classification wont scale in
this case due to large number of labels, same is true for any other
classifiers. Embedding of labels as well as features into smaller label space
is an essential first step. Moreover, other issues include existence of head
and tail labels, where tail labels are labels which exist in relatively smaller
number of given samples. The existence of tail labels creates issues during
embedding. This area has invited application of wide range of approaches
ranging from bit compression motivated from compressed sensing, tree based
embeddings, deep learning based latent space embedding including using
attention weights, linear algebra based embeddings such as SVD, clustering,
hashing, to name a few. The community has come up with a useful set of metrics
to identify correctly the prediction for head or tail labels.
- Abstract(参考訳): 極端なマルチラベル分類(英: Extreme multilabel classification、XML)は、機械学習における活発な関心領域である。
従来のマルチラベル分類と比較すると、このラベルの数は極めて多いため、極端なマルチラベル分類の名称である。
この場合、古典的な分類と全ての分類は、多くのラベルのためにスケールしないが、他の分類器も同様である。
ラベルと、より小さなラベル空間に機能を組み込むことは、重要な第一歩です。
その他の問題として、頭と尾のラベルの存在があり、テールラベルは比較的少ないサンプル数に存在するラベルである。
テールラベルの存在は埋め込み中に問題を引き起こす。
この領域では、圧縮センシングによるビット圧縮、木ベースの埋め込み、注意重みの使用を含むディープラーニングベースの潜在空間埋め込み、SVD、クラスタリング、ハッシュなどの線形代数ベースの埋め込みなど、幅広いアプローチが採用されている。
コミュニティは、頭や尾のラベルの予測を正しく識別するために有用なメトリクスセットを考案した。
関連論文リスト
- Towards Imbalanced Large Scale Multi-label Classification with Partially
Annotated Labels [8.977819892091]
マルチラベル分類は、複数のクラスにインスタンスを関連付けることができる日常生活において、広く発生する問題である。
本研究では,ラベルの不均衡の問題に対処し,部分ラベルを用いたニューラルネットワークのトレーニング方法について検討する。
論文 参考訳(メタデータ) (2023-07-31T21:50:48Z) - Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise Label Configurations [91.67511167969934]
imprecise label learning (ILL)は、様々な不正確なラベル構成で学習を統合するためのフレームワークである。
我々は、ILLが部分ラベル学習、半教師付き学習、雑音ラベル学習にシームレスに適応できることを実証した。
論文 参考訳(メタデータ) (2023-05-22T04:50:28Z) - Bridging the Gap between Model Explanations in Partially Annotated
Multi-label Classification [85.76130799062379]
偽陰性ラベルがモデルの説明にどのように影響するかを考察する。
本稿では,部分ラベルで学習したモデルの属性スコアを向上し,その説明をフルラベルで学習したモデルと類似させる。
論文 参考訳(メタデータ) (2023-04-04T14:00:59Z) - Pairwise Instance Relation Augmentation for Long-tailed Multi-label Text
Classification [38.66674700075432]
Pairwise Instance Relation Augmentation Network (PIRAN) を提案する。
PIRANはSOTA法を一貫して上回り、テールラベルの性能を劇的に向上させる。
論文 参考訳(メタデータ) (2022-11-19T12:45:54Z) - An Effective Approach for Multi-label Classification with Missing Labels [8.470008570115146]
分類ネットワークにさらなる複雑さをもたらすことなく、アノテーションのコストを削減するための擬似ラベルベースのアプローチを提案する。
新たな損失関数を設計することにより、各インスタンスが少なくとも1つの正のラベルを含む必要があるという要求を緩和することができる。
提案手法は,正のラベルと負のラベルの不均衡を扱える一方で,既存の欠落ラベル学習手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-10-24T23:13:57Z) - Multi-label Classification with High-rank and High-order Label
Correlations [62.39748565407201]
従来の手法では, ラベル行列を低ランク行列係数化した潜在ラベル空間に変換することにより, 高階ラベル相関を捕えることができた。
本稿では,高次ラベル相関を明示的に記述する簡易かつ効果的な手法を提案し,同時にラベル行列の高次値を維持する。
12個のベンチマークデータセットの比較研究により,マルチラベル分類における提案アルゴリズムの有効性が検証された。
論文 参考訳(メタデータ) (2022-07-09T05:15:31Z) - Large Loss Matters in Weakly Supervised Multi-Label Classification [50.262533546999045]
まず、観測されていないラベルを負のラベルとみなし、Wタスクをノイズの多いマルチラベル分類にキャストする。
ノイズラベルを記憶しないために,大規模な損失サンプルを拒絶または補正する新しいW法を提案する。
提案手法は, 弱教師付きマルチラベル分類において, 大きな損失を適切に処理することが重要であることを検証した。
論文 参考訳(メタデータ) (2022-06-08T08:30:24Z) - Structured Semantic Transfer for Multi-Label Recognition with Partial
Labels [85.6967666661044]
部分ラベル付きマルチラベル認識モデルのトレーニングを可能にする構造化意味伝達(SST)フレームワークを提案する。
このフレームワークは2つの相補的なトランスファーモジュールから構成され、インテリアイメージとクロスイメージセマンティック相関を探索する。
Microsoft COCO、Visual Genome、Pascal VOCデータセットの実験は、提案されたSSTフレームワークが現在の最先端アルゴリズムよりも優れたパフォーマンスが得られることを示している。
論文 参考訳(メタデータ) (2021-12-21T02:15:01Z) - A Study on the Autoregressive and non-Autoregressive Multi-label
Learning [77.11075863067131]
本稿では,ラベルとラベルの依存関係を共同で抽出する自己アテンションに基づく変分エンコーダモデルを提案する。
したがって、ラベルラベルとラベル機能の両方の依存関係を保ちながら、すべてのラベルを並列に予測することができる。
論文 参考訳(メタデータ) (2020-12-03T05:41:44Z) - Multilabel Classification by Hierarchical Partitioning and
Data-dependent Grouping [33.48217977134427]
ラベルベクトルの空間性と階層構造を利用して、それらを低次元空間に埋め込む。
我々は、低ランク非負行列因子化に基づくグループ構成を用いる、新しいデータ依存型グループ化手法を提案する。
次に、大規模問題におけるラベル階層を利用して、大きなラベル空間を分割し、より小さなサブプロブレムを生成する階層的分割手法を提案する。
論文 参考訳(メタデータ) (2020-06-24T22:23:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。