論文の概要: An Effective Approach for Multi-label Classification with Missing Labels
- arxiv url: http://arxiv.org/abs/2210.13651v1
- Date: Mon, 24 Oct 2022 23:13:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-26 14:57:59.390666
- Title: An Effective Approach for Multi-label Classification with Missing Labels
- Title(参考訳): ラベル欠落によるマルチラベル分類の効果的なアプローチ
- Authors: Xin Zhang and Rabab Abdelfattah and Yuqi Song and Xiaofeng Wang
- Abstract要約: 分類ネットワークにさらなる複雑さをもたらすことなく、アノテーションのコストを削減するための擬似ラベルベースのアプローチを提案する。
新たな損失関数を設計することにより、各インスタンスが少なくとも1つの正のラベルを含む必要があるという要求を緩和することができる。
提案手法は,正のラベルと負のラベルの不均衡を扱える一方で,既存の欠落ラベル学習手法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 8.470008570115146
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Compared with multi-class classification, multi-label classification that
contains more than one class is more suitable in real life scenarios. Obtaining
fully labeled high-quality datasets for multi-label classification problems,
however, is extremely expensive, and sometimes even infeasible, with respect to
annotation efforts, especially when the label spaces are too large. This
motivates the research on partial-label classification, where only a limited
number of labels are annotated and the others are missing. To address this
problem, we first propose a pseudo-label based approach to reduce the cost of
annotation without bringing additional complexity to the existing
classification networks. Then we quantitatively study the impact of missing
labels on the performance of classifier. Furthermore, by designing a novel loss
function, we are able to relax the requirement that each instance must contain
at least one positive label, which is commonly used in most existing
approaches. Through comprehensive experiments on three large-scale multi-label
image datasets, i.e. MS-COCO, NUS-WIDE, and Pascal VOC12, we show that our
method can handle the imbalance between positive labels and negative labels,
while still outperforming existing missing-label learning approaches in most
cases, and in some cases even approaches with fully labeled datasets.
- Abstract(参考訳): マルチクラス分類と比較すると、複数のクラスを含むマルチラベル分類は現実のシナリオに適している。
しかし、マルチラベル分類問題のための完全ラベル付き高品質データセットを持つことは、特にラベル空間が大きすぎる場合には、アノテーションの取り組みに関して非常に高価であり、時には不可能である。
これは部分ラベル分類の研究を動機付け、限られた数のラベルが注釈付けされ、他のラベルが欠落している。
この問題に対処するため,我々はまず,既存の分類ネットワークを複雑化することなく,アノテーションのコストを削減できる擬似ラベル方式を提案する。
次に,欠落ラベルが分類器の性能に与える影響を定量的に検討する。
さらに、新しい損失関数を設計することにより、各インスタンスが少なくとも1つの正のラベルを含む必要があるという要求を緩和することができる。
大規模なマルチラベル画像データセットであるMS-COCO, NUS-WIDE, Pascal VOC12の総合的な実験により, 正のラベルと負のラベルとの不均衡を扱える一方で, 既存の欠落ラベル学習手法よりも優れていることを示す。
関連論文リスト
- Determined Multi-Label Learning via Similarity-Based Prompt [12.428779617221366]
マルチラベル分類では、各トレーニングインスタンスは複数のクラスラベルに同時に関連付けられている。
この問題を軽減するために,textitDetermined Multi-Label Learning (DMLL) と呼ばれる新しいラベル設定を提案する。
論文 参考訳(メタデータ) (2024-03-25T07:08:01Z) - Towards Imbalanced Large Scale Multi-label Classification with Partially
Annotated Labels [8.977819892091]
マルチラベル分類は、複数のクラスにインスタンスを関連付けることができる日常生活において、広く発生する問題である。
本研究では,ラベルの不均衡の問題に対処し,部分ラベルを用いたニューラルネットワークのトレーニング方法について検討する。
論文 参考訳(メタデータ) (2023-07-31T21:50:48Z) - Robust Assignment of Labels for Active Learning with Sparse and Noisy
Annotations [0.17188280334580192]
監視された分類アルゴリズムは、世界中の多くの現実の問題を解決するために使用される。
残念なことに、多くのタスクに対して良質なアノテーションを取得することは、実際に行うには不可能か、あるいはコストがかかりすぎます。
サンプル空間のラベルのない部分を利用する2つの新しいアノテーション統一アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-07-25T19:40:41Z) - Class-Distribution-Aware Pseudo Labeling for Semi-Supervised Multi-Label
Learning [97.88458953075205]
Pseudo-labelingは、ラベルなしデータを利用するための人気で効果的なアプローチとして登場した。
本稿では,クラスアウェアの擬似ラベル処理を行うCAP(Class-Aware Pseudo-Labeling)という新しい手法を提案する。
論文 参考訳(メタデータ) (2023-05-04T12:52:18Z) - Bridging the Gap between Model Explanations in Partially Annotated
Multi-label Classification [85.76130799062379]
偽陰性ラベルがモデルの説明にどのように影響するかを考察する。
本稿では,部分ラベルで学習したモデルの属性スコアを向上し,その説明をフルラベルで学習したモデルと類似させる。
論文 参考訳(メタデータ) (2023-04-04T14:00:59Z) - Reliable Representations Learning for Incomplete Multi-View Partial Multi-Label Classification [78.15629210659516]
本稿ではRANKという不完全なマルチビュー部分的マルチラベル分類ネットワークを提案する。
既存の手法に固有のビューレベルの重みを分解し、各サンプルのビューに品質スコアを動的に割り当てる品質対応サブネットワークを提案する。
我々のモデルは、完全なマルチビューマルチラベルデータセットを処理できるだけでなく、欠落したインスタンスやラベルを持つデータセットでも機能する。
論文 参考訳(メタデータ) (2023-03-30T03:09:25Z) - One Positive Label is Sufficient: Single-Positive Multi-Label Learning
with Label Enhancement [71.9401831465908]
本研究では,SPMLL (Single- positive multi-label learning) について検討した。
ラベルエンハンスメントを用いた単陽性MultIラベル学習という新しい手法を提案する。
ベンチマークデータセットの実験により,提案手法の有効性が検証された。
論文 参考訳(メタデータ) (2022-06-01T14:26:30Z) - Acknowledging the Unknown for Multi-label Learning with Single Positive
Labels [65.5889334964149]
伝統的に、全ての無注釈ラベルは、単一正のマルチラベル学習(SPML)において負のラベルとして仮定される。
本研究では, 予測確率のエントロピーを最大化するエントロピー最大化(EM)損失を提案する。
非通知ラベルの正負ラベル不均衡を考慮し、非対称耐性戦略とより精密な監視を行うセルフペースト手順を備えた非対称擬似ラベル(APL)を提案する。
論文 参考訳(メタデータ) (2022-03-30T11:43:59Z) - Multi-Label Learning from Single Positive Labels [37.17676289125165]
与えられた画像に対して適用可能なラベルを全て予測することは、マルチラベル分類(multi-label classification)として知られている。
その結果,ラベルの確認が著しく少ないにもかかわらず,完全ラベル付き分類器の性能にアプローチできることが示唆された。
論文 参考訳(メタデータ) (2021-06-17T17:58:04Z) - Evaluating Multi-label Classifiers with Noisy Labels [0.7868449549351487]
実世界では、クリーンなデータセットよりもノイズの多いデータセットを扱う方が一般的です。
雑音ラベルを効果的に処理するコンテキストベースマルチラベル分類器(CbMLC)を提案する。
CbMLCは、ほとんどの場合、以前の方法よりも大幅に改善されています。
論文 参考訳(メタデータ) (2021-02-16T19:50:52Z) - Interaction Matching for Long-Tail Multi-Label Classification [57.262792333593644]
既存のマルチラベル分類モデルにおいて,制約に対処するためのエレガントで効果的なアプローチを提案する。
ソフトなn-gram相互作用マッチングを実行することで、ラベルと自然言語記述をマッチングする。
論文 参考訳(メタデータ) (2020-05-18T15:27:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。