論文の概要: Reliability Assurance for Deep Neural Network Architectures Against
Numerical Defects
- arxiv url: http://arxiv.org/abs/2302.06086v3
- Date: Sun, 23 Apr 2023 18:13:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-25 21:08:17.957375
- Title: Reliability Assurance for Deep Neural Network Architectures Against
Numerical Defects
- Title(参考訳): 数値欠陥に対するディープニューラルネットワークアーキテクチャの信頼性保証
- Authors: Linyi Li, Yuhao Zhang, Luyao Ren, Yingfei Xiong, Tao Xie
- Abstract要約: 深部ニューラルネットワーク(DNN)における数値欠陥に対する信頼性の高いRANUM手法を提案する。
RANUMは、障害防止テストによる潜在的な欠陥可能性を確認する最初のアプローチであり、自動的に修正を提案する。
実験では、RANUMは3つの信頼性保証タスクで最先端のアプローチより優れている。
- 参考スコア(独自算出の注目度): 12.125190405255838
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the widespread deployment of deep neural networks (DNNs), ensuring the
reliability of DNN-based systems is of great importance. Serious reliability
issues such as system failures can be caused by numerical defects, one of the
most frequent defects in DNNs. To assure high reliability against numerical
defects, in this paper, we propose the RANUM approach including novel
techniques for three reliability assurance tasks: detection of potential
numerical defects, confirmation of potential-defect feasibility, and suggestion
of defect fixes. To the best of our knowledge, RANUM is the first approach that
confirms potential-defect feasibility with failure-exhibiting tests and
suggests fixes automatically. Extensive experiments on the benchmarks of 63
real-world DNN architectures show that RANUM outperforms state-of-the-art
approaches across the three reliability assurance tasks. In addition, when the
RANUM-generated fixes are compared with developers' fixes on open-source
projects, in 37 out of 40 cases, RANUM-generated fixes are equivalent to or
even better than human fixes.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)の普及により、DNNベースのシステムの信頼性を保証することが非常に重要である。
システム障害などの深刻な信頼性問題は、DNNの最も頻繁な欠陥の一つである数値的な欠陥によって引き起こされる可能性がある。
数値欠陥に対する高い信頼性を確保するため,本論文では,潜在的な数値欠陥の検出,潜在的な欠陥の確認,欠陥修正の提案という,3つの信頼性保証タスクのための新しい手法を含むRANUM手法を提案する。
私たちの知る限りでは、RANUMは失敗防止テストによる潜在的な欠陥の可能性を確認し、自動的に修正を提案する最初のアプローチです。
63の現実世界のDNNアーキテクチャのベンチマークに関する大規模な実験は、RANUMが3つの信頼性保証タスクで最先端のアプローチより優れていることを示している。
さらに、オープンソースの開発者の修正と比較すると、40ケース中37ケースで、ranumが生成した修正は、人間の修正と同等か、それ以上に優れている。
関連論文リスト
- Quantifying calibration error in modern neural networks through evidence based theory [0.0]
本稿では、予測エラー(ECE)の評価に主観的論理を組み込むことにより、ニューラルネットワークの信頼性を定量化する新しい枠組みを提案する。
我々は,MNISTおよびCIFAR-10データセットを用いた実験により,信頼性が向上したことを示す。
提案されたフレームワークは、医療や自律システムといったセンシティブな分野における潜在的な応用を含む、AIモデルのより解釈可能でニュアンスな評価を提供する。
論文 参考訳(メタデータ) (2024-10-31T23:54:21Z) - Revisiting Confidence Estimation: Towards Reliable Failure Prediction [53.79160907725975]
多くの信頼度推定法は誤分類誤りを検出するのに有害である。
本稿では, 最先端の故障予測性能を示す平坦な最小値を求めることにより, 信頼性ギャップを拡大することを提案する。
論文 参考訳(メタデータ) (2024-03-05T11:44:14Z) - Enumerating Safe Regions in Deep Neural Networks with Provable
Probabilistic Guarantees [86.1362094580439]
安全プロパティとDNNが与えられた場合、安全であるプロパティ入力領域のすべての領域の集合を列挙する。
この問題の #P-hardness のため,epsilon-ProVe と呼ばれる効率的な近似法を提案する。
提案手法は, 許容限界の統計的予測により得られた出力可到達集合の制御可能な過小評価を利用する。
論文 参考訳(メタデータ) (2023-08-18T22:30:35Z) - APPRAISER: DNN Fault Resilience Analysis Employing Approximation Errors [1.1091582432763736]
安全クリティカルなアプリケーションにおけるディープニューラルネットワーク(DNN)は、新たな信頼性の懸念を引き起こす。
エミュレーションによる断層注入の最先端手法は, 時間, 設計, 制御・複雑度の問題を引き起こす。
APPRAISERは、非伝統的な目的に関数近似を適用し、近似計算誤差を用いる。
論文 参考訳(メタデータ) (2023-05-31T10:53:46Z) - A Systematic Literature Review on Hardware Reliability Assessment
Methods for Deep Neural Networks [1.189955933770711]
ディープニューラルネットワーク(DNN)の信頼性は研究の必須課題である。
近年、DNNの信頼性を評価するためにいくつかの研究が公表されている。
本研究では,DNNの信頼性評価手法について,SLR(Systematic Literature Review)を実施している。
論文 参考訳(メタデータ) (2023-05-09T20:08:30Z) - DeepVigor: Vulnerability Value Ranges and Factors for DNNs' Reliability
Assessment [1.189955933770711]
Deep Neural Networks(DNN)とそのアクセラレータは、安全クリティカルなアプリケーションに頻繁にデプロイされている。
本稿では,DeepVigorと呼ばれる,高精度,微粒化,メトリック指向,アクセラレーションに依存しない新しい手法を提案する。
論文 参考訳(メタデータ) (2023-03-13T08:55:10Z) - The #DNN-Verification Problem: Counting Unsafe Inputs for Deep Neural
Networks [94.63547069706459]
#DNN-Verification問題は、DNNの入力構成の数を数えることによって安全性に反する結果となる。
違反の正確な数を返す新しい手法を提案する。
安全クリティカルなベンチマークのセットに関する実験結果を示す。
論文 参考訳(メタデータ) (2023-01-17T18:32:01Z) - Fault-Aware Design and Training to Enhance DNNs Reliability with
Zero-Overhead [67.87678914831477]
ディープニューラルネットワーク(DNN)は、幅広い技術的進歩を可能にする。
最近の知見は、過渡的なハードウェア欠陥がモデル予測を劇的に損なう可能性があることを示唆している。
本研究では,トレーニングとモデル設計の両面で信頼性の問題に取り組むことを提案する。
論文 参考訳(メタデータ) (2022-05-28T13:09:30Z) - Certifiably Adversarially Robust Detection of Out-of-Distribution Data [111.67388500330273]
我々は,OOD点における信頼度を低くすることで,OOD検出の証明可能な最悪のケースを保証することを目的としている。
トレーニング時に見られるOODデータセットを超えて一般化されたOODデータの信頼性の非自明な境界が可能であることを示す。
論文 参考訳(メタデータ) (2020-07-16T17:16:47Z) - Transferable, Controllable, and Inconspicuous Adversarial Attacks on
Person Re-identification With Deep Mis-Ranking [83.48804199140758]
システム出力のランキングを乱す学習とミスランクの定式化を提案する。
また,新たなマルチステージネットワークアーキテクチャを開発することで,バックボックス攻撃を行う。
そこで本手法では, 異なるマルチショットサンプリングにより, 悪意のある画素数を制御することができる。
論文 参考訳(メタデータ) (2020-04-08T18:48:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。