論文の概要: Enumerating Safe Regions in Deep Neural Networks with Provable
Probabilistic Guarantees
- arxiv url: http://arxiv.org/abs/2308.09842v2
- Date: Tue, 20 Feb 2024 17:35:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-21 21:04:49.176240
- Title: Enumerating Safe Regions in Deep Neural Networks with Provable
Probabilistic Guarantees
- Title(参考訳): 確率的保証付きディープニューラルネットワークにおける安全領域の列挙
- Authors: Luca Marzari, Davide Corsi, Enrico Marchesini, Alessandro Farinelli
and Ferdinando Cicalese
- Abstract要約: 安全プロパティとDNNが与えられた場合、安全であるプロパティ入力領域のすべての領域の集合を列挙する。
この問題の #P-hardness のため,epsilon-ProVe と呼ばれる効率的な近似法を提案する。
提案手法は, 許容限界の統計的予測により得られた出力可到達集合の制御可能な過小評価を利用する。
- 参考スコア(独自算出の注目度): 86.1362094580439
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identifying safe areas is a key point to guarantee trust for systems that are
based on Deep Neural Networks (DNNs). To this end, we introduce the
AllDNN-Verification problem: given a safety property and a DNN, enumerate the
set of all the regions of the property input domain which are safe, i.e., where
the property does hold. Due to the #P-hardness of the problem, we propose an
efficient approximation method called epsilon-ProVe. Our approach exploits a
controllable underestimation of the output reachable sets obtained via
statistical prediction of tolerance limits, and can provide a tight (with
provable probabilistic guarantees) lower estimate of the safe areas. Our
empirical evaluation on different standard benchmarks shows the scalability and
effectiveness of our method, offering valuable insights for this new type of
verification of DNNs.
- Abstract(参考訳): 安全な領域を特定することは、ディープニューラルネットワーク(DNN)に基づくシステムの信頼性を保証する重要なポイントである。
この目的のために、安全プロパティとDNNが与えられた場合、安全であるプロパティ入力領域のすべての領域の集合を列挙する、すなわち、そのプロパティが保持される場所を列挙する。
この問題の #P-hardness のため,epsilon-ProVe と呼ばれる効率的な近似法を提案する。
本手法は,許容限界の統計的予測によって得られる出力到達可能集合の制御可能な過小評価を活用し,安全領域の厳密な(確率的保証の可能な)推定を提供する。
異なる標準ベンチマークに対する実証的な評価は、我々の手法のスケーラビリティと有効性を示し、この新しいタイプのDNNの検証に有用な洞察を提供する。
関連論文リスト
- Scaling #DNN-Verification Tools with Efficient Bound Propagation and
Parallel Computing [57.49021927832259]
ディープニューラルネットワーク(DNN)は多くのシナリオで異常な結果を示した強力なツールです。
しかし、それらの複雑な設計と透明性の欠如は、現実世界のアプリケーションに適用する際の安全性上の懸念を提起する。
DNNの形式的検証(FV)は、安全面の証明可能な保証を提供する貴重なソリューションとして登場した。
論文 参考訳(メタデータ) (2023-12-10T13:51:25Z) - The #DNN-Verification Problem: Counting Unsafe Inputs for Deep Neural
Networks [94.63547069706459]
#DNN-Verification問題は、DNNの入力構成の数を数えることによって安全性に反する結果となる。
違反の正確な数を返す新しい手法を提案する。
安全クリティカルなベンチマークのセットに関する実験結果を示す。
論文 参考訳(メタデータ) (2023-01-17T18:32:01Z) - Safety Verification for Neural Networks Based on Set-boundary Analysis [5.487915758677295]
ニューラルネットワーク(NN)は、自動運転車のような安全クリティカルなシステムにますます適用されている。
本稿では, NNの安全性検証問題に対するトポロジ的視点から検討するための, 集合境界到達可能性法を提案する。
論文 参考訳(メタデータ) (2022-10-09T05:55:37Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - CertainNet: Sampling-free Uncertainty Estimation for Object Detection [65.28989536741658]
ニューラルネットワークの不確実性を推定することは、安全クリティカルな設定において基本的な役割を果たす。
本研究では,オブジェクト検出のための新しいサンプリング不要不確実性推定法を提案する。
私たちはそれをCertainNetと呼び、各出力信号に対して、オブジェクト性、クラス、位置、サイズという、別の不確実性を提供するのは、これが初めてです。
論文 参考訳(メタデータ) (2021-10-04T17:59:31Z) - Certification of Iterative Predictions in Bayesian Neural Networks [79.15007746660211]
我々は、BNNモデルの軌道が与えられた状態に到達する確率に対して、安全でない状態の集合を避けながら低い境界を計算する。
我々は、制御と強化学習の文脈において、下限を用いて、与えられた制御ポリシーの安全性保証を提供する。
論文 参考訳(メタデータ) (2021-05-21T05:23:57Z) - PAC Confidence Predictions for Deep Neural Network Classifiers [28.61937254015157]
ディープニューラルネットワーク(DNN)を安全クリティカルな環境でデプロイする上で重要な課題は、その不確実性を定量化する厳密な方法を提供することだ。
証明可能な正当性保証を備えたDNNに対して,予測された分類信頼度を構築するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-11-02T04:09:17Z) - Probabilistic Safety for Bayesian Neural Networks [22.71265211510824]
逆入力摂動下でのベイズニューラルネットワーク(BNN)の確率論的安全性について検討する。
特に,BNNからサンプリングしたネットワークが敵攻撃に対して脆弱であることを示す。
そこで本手法は,BNNの確率論的安全性を数百万のパラメータで証明できることを実証的に示し,課題の回避を訓練したBNNに適用する。
論文 参考訳(メタデータ) (2020-04-21T20:25:33Z) - Scalable Quantitative Verification For Deep Neural Networks [44.570783946111334]
ディープニューラルネットワーク(DNN)のためのテスト駆動検証フレームワークを提案する。
本手法は,形式的確率特性の健全性が証明されるまで,十分な試験を行う。
われわれの研究は、現実世界のディープニューラルネットワークが捉えた分布の性質を、証明可能な保証で検証する方法を開拓している。
論文 参考訳(メタデータ) (2020-02-17T09:53:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。