論文の概要: Learning-Based Defect Recognitions for Autonomous UAV Inspections
- arxiv url: http://arxiv.org/abs/2302.06093v1
- Date: Mon, 13 Feb 2023 04:25:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-14 16:32:33.716193
- Title: Learning-Based Defect Recognitions for Autonomous UAV Inspections
- Title(参考訳): 自律型UAV検査のための学習に基づく欠陥認識
- Authors: Kangcheng Liu
- Abstract要約: 我々は,Alexnet,VGG,Resnetなどの古典的ネットワークアーキテクチャに基づくひび割れ検出のためのディープラーニングフレームワークを実装した。
特徴ピラミッドネットワークアーキテクチャにヒントを得て、階層的畳み込みニューラルネットワーク(CNN)ディープラーニングフレームワークも提案されている。
また, 各種コンクリート構造物のひび割れ検査作業のために, 無人航空機の自動点検のための枠組みも提案する。
- 参考スコア(独自算出の注目度): 1.713291434132985
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic crack detection and segmentation play a significant role in the
whole system of unmanned aerial vehicle inspections. In this paper, we have
implemented a deep learning framework for crack detection based on classical
network architectures including Alexnet, VGG, and Resnet. Moreover, inspired by
the feature pyramid network architecture, a hierarchical convolutional neural
network (CNN) deep learning framework which is efficient in crack segmentation
is also proposed, and its performance of it is compared with other
state-of-the-art network architecture. We have summarized the existing crack
detection and segmentation datasets and established the largest existing
benchmark dataset on the internet for crack detection and segmentation, which
is open-sourced for the research community. Our feature pyramid crack
segmentation network is tested on the benchmark dataset and gives satisfactory
segmentation results. A framework for automatic unmanned aerial vehicle
inspections is also proposed and will be established for the crack inspection
tasks of various concrete structures. All our self-established datasets and
codes are open-sourced at:
https://github.com/KangchengLiu/Crack-Detection-and-Segmentation-Dataset-for-UAV-Inspection
- Abstract(参考訳): 自動き裂検出とセグメンテーションは無人航空機の検査システム全体において重要な役割を果たす。
本稿では,alexnet,vgg,resnetなどの古典的ネットワークアーキテクチャに基づくき裂検出のためのディープラーニングフレームワークを実装した。
さらに, 階層型畳み込みニューラルネットワーク(CNN)によるフラクチャーセグメンテーションを効率的に行うディープラーニングフレームワークである特徴ピラミッドネットワークアーキテクチャに着想を得て, その性能を他の最先端ネットワークアーキテクチャと比較した。
我々は,既存のクラック検出およびセグメント化データセットを要約し,インターネット上で最大のクラック検出およびセグメント化のためのベンチマークデータセットを確立した。
我々のフィーチャーピラミッドクラックセグメンテーションネットワークはベンチマークデータセット上でテストされ、十分なセグメンテーション結果が得られる。
また, 各種コンクリート構造物のひび割れ検査作業のために, 無人航空機の自動点検のための枠組みも提案する。
すべての自己確立したデータセットとコードは、https://github.com/KangchengLiu/Crack-Detection-and-Segmentation-for-UAV-Inspectionでオープンソース化されています。
関連論文リスト
- Revisiting Generative Adversarial Networks for Binary Semantic
Segmentation on Imbalanced Datasets [20.538287907723713]
異常き裂領域検出は典型的なバイナリセマンティックセグメンテーションタスクであり、アルゴリズムによって舗装面画像上のひび割れを表す画素を自動的に検出することを目的としている。
既存のディープラーニングベースの手法は、特定の公共舗装のデータセットで優れた結果を得たが、不均衡なデータセットでは性能が劇的に低下する。
画素レベルの異常き裂領域検出タスクに対して,条件付き生成逆ネットワーク(cGAN)に基づくディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-03T19:24:40Z) - Masked Autoencoders Are Robust Neural Architecture Search Learners [14.965550562292476]
本研究では,Masked Autoencoders (MAE) に基づく新しいNASフレームワークを提案する。
教師あり学習対象を画像再構成タスクに置き換えることで,ネットワークアーキテクチャの堅牢な発見を可能にする。
論文 参考訳(メタデータ) (2023-11-20T13:45:21Z) - The Impact of Different Backbone Architecture on Autonomous Vehicle
Dataset [120.08736654413637]
バックボーンアーキテクチャによって抽出された特徴の質は、全体的な検出性能に大きな影響を与える可能性がある。
本研究は,KITTI,NuScenes,BDDの3つの自律走行車データセットを評価し,対象検出タスクにおける異なるバックボーンアーキテクチャの性能を比較した。
論文 参考訳(メタデータ) (2023-09-15T17:32:15Z) - Real-time High-Resolution Neural Network with Semantic Guidance for
Crack Segmentation [4.651261550392625]
本稿では,ひび割れのセグメンテーションに特化して設計されたセマンティックガイダンスを備えた高分解能ネットワークHrSegNetについて述べる。
HrSegNetは、ひび割れの詳細を保存しながらリアルタイムの推論速度を保証する。
このアプローチは、高分解能モデリングとリアルタイム検出の間にトレードオフがあることを実証する。
論文 参考訳(メタデータ) (2023-07-01T08:38:18Z) - Infrastructure Crack Segmentation: Boundary Guidance Method and
Benchmark Dataset [11.282003429161163]
本稿では, き裂の固有特性について検討し, き裂の識別に境界特性を導入する。
境界誘導クラックセグメンテーションモデル(BGCrack)を、高頻度モジュールを含むターゲット構造とモジュールで構築する。
本稿では, 鋼ひび割れの同定のための統一的, 公正なベンチマークを確立するための鋼ひび割れデータセットを提供する。
論文 参考訳(メタデータ) (2023-06-15T15:25:53Z) - NAS-FCOS: Efficient Search for Object Detection Architectures [113.47766862146389]
簡易なアンカーフリー物体検出器の特徴ピラミッドネットワーク (FPN) と予測ヘッドを探索し, より効率的な物体検出手法を提案する。
慎重に設計された検索空間、検索アルゴリズム、ネットワーク品質を評価するための戦略により、8つのV100 GPUを使用して、4日以内に最高のパフォーマンスの検知アーキテクチャを見つけることができる。
論文 参考訳(メタデータ) (2021-10-24T12:20:04Z) - MD-CSDNetwork: Multi-Domain Cross Stitched Network for Deepfake
Detection [80.83725644958633]
現在のディープフェイク生成法では、偽画像やビデオの周波数スペクトルに識別的アーティファクトが残されている。
MD-CSDNetwork(MD-CSDNetwork)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2021-09-15T14:11:53Z) - Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation [76.2621758731288]
セグメンテーションにおけるアウト・オブ・ディストリビューション(OOD)オブジェクトの検出に取り組む。
私たちの主な貢献は、ObsNetと呼ばれる新しいOOD検出アーキテクチャであり、ローカル・アタック(LAA)に基づく専用トレーニングスキームと関連付けられています。
3つの異なるデータセットの文献の最近の10つの手法と比較して,速度と精度の両面で最高の性能が得られることを示す。
論文 参考訳(メタデータ) (2021-08-03T17:09:56Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - On the use of local structural properties for improving the efficiency
of hierarchical community detection methods [77.34726150561087]
本研究では,階層型コミュニティ検出の効率向上のために,局所構造ネットワーク特性をプロキシとして利用する方法について検討する。
また,ネットワークプルーニングの性能への影響を,階層的コミュニティ検出をより効率的にするための補助的手法として検証する。
論文 参考訳(メタデータ) (2020-09-15T00:16:12Z) - Weakly Supervised Instance Segmentation by Deep Community Learning [39.18749732409763]
複数のタスクによる深層コミュニティ学習に基づく弱教師付きインスタンスセグメンテーションアルゴリズムを提案する。
我々は、統合されたディープニューラルネットワークアーキテクチャを設計することでこの問題に対処する。
提案アルゴリズムは、弱教師付き設定における最先端性能を実現する。
論文 参考訳(メタデータ) (2020-01-30T08:35:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。